A Beam Test Facility for High Current Photoinjector and its Key Technologies Development at IHEP

Xiaoping Li, Yunlong Chi, Jiuqing Wang, Shilun Pei, Jinqiang Xu, Jiyuan Zhai, Shaopeng Li, Zusheng Zhou

Institute of High Energy Physics, CAS, China

ERL2017, 21 June 2017, Cern

- PAPS introduction
- A Beam Test Facility for High Current Photoinjector
- Related Key Technologies Development
- Future plan
- Summary and Outlook

- PAPS introduction
- A Beam Test Facility for High Current Photoinjector
- Related Key Technologies Development
- Future plan
- Summary and Outlook

PAPS Introduction

Platform of Advanced Photon Source Technology R&D, Huairou Science Park, Huairou, Beijing

Construction: 2017.5 – 2020.6 Ground Breaking: May 31, 2017

PAPS Introduction

 \oplus

Cryogenic system 2.5kW@4.5K/300W@2K 800L/h liquidation

- 100W for 3 vertical test stands
- 100W for 2 horizontal module test stands
- 100W for beam test system

X-ray system

 Advanced X-ray related technologies R&D

4500 m² SRF lab

Mission: World-leading SRF Lab for future Superconducting Accelerator Projects and SRF Frontier R&D

- Three vertical test stands each with four cavities
- Coupler conditioning stands for eight couplers
- 30 m-long clean room
- 36 m-long module assembly zone
- Two horizontal module test stands (12m module)

Beam test system

- Beam test based on superconducting module
- High power conditioning (High efficiency klystron)
- High current photoinjector R&D

Magnet system

• Precision machining for HEPS magnets

- PAPS introduction
- A Beam Test Facility for High Current Photoinjector
- Related Key Technologies Development
- Future plan
- Summary and Outlook

PAPS Beam Test System

PAPS Beam Test System

Why is 650MHz SRF?

- The R&D of CEPC (Circular Electron Positron Collider)
- Circumference: 100 km
- Ring type: Double Ring (baseline)
- SRF System: 650MHz in the Main Ring of CEPC

Several key technologies R&D already started

- 650MHz High-Q SRF Cavity
- High power (300kW CW) 650MHz Input Coupler
- High power 650MHz Klystron (800kW, efficiency≥75%)
- 650MHz Cryomodule (650 MHz 6 x 2-cell Cavities)
- 1.6MW PSM Power Supply for Klystron

PAPS Beam Test System

Preliminary beam dynamics study

- From gun to exit of 650MHz cryomodule
- To be continued.....

Input parameters of simulation

Parameter	Value
DC-gun voltage	350 kV / 500 kV
Beam current	10mA
Bunch repetition frequency	650MHz
Bunch charge	15.4pC
Beam transverse distribution	round and uniform
Beam longitudinal distribution	beer can with 18 ps flat top and 2ps rise/fall time
NC buncher voltage	82.8 kV/ 111.6kV
Gradient for SC cavity	18MV/m

- PAPS introduction
- A Beam Test Facility for High Current Photoinjector
- Related Key Technologies Development
- Future plan
- Summary and Outlook

A photocathode DC-Gun R&D

• Design and parameters

Layout of Photocathode DC-Gun

Parameter	Value		
HV	$350 \sim 500 \text{ kV}$		
Cathode	GaAs:Cs		
QE	5-7%(initial),1%		
Driven laser	2.3W, 530nm		
Repetition rate	100MHz, 1.3GHz*		
Nor. emittance	(1~2)mm.mrad		
Bunch length	20ps		
Beam current	(1~10) mA		

*Two operation modes:

1). 100MHz-7.7mA-77pC, 2)1300MHz-10mA-7.7pC

A photocathode DC-Gun R&D

- Construction: Laser system
- 1. Two laser oscillators are working at 1.3GHz and 100MHz respectively
- 2. 100MHz and 1.3GHz oscillators are integrated into one laser system with a 2x2 fiber coupler
- 3. The green laser output power after SHG crystal is more than 5W
- A set of four a-BBO crystals is used as longitudinal pulse shaper stacking an input pulse to >20ps

Parameters	1st mode	2nd mode
Electron bunch charge	77pC	7.7pC
Pulse energy at cathode	18nJ	1.8nJ
Pulse repetition rate	100MHz	1.3GHz
Power at cathode	1.8W	2.3W
Pulse length (flattop)	20-30ps	20-30ps

Requirements for two operation modes

Laser pulse modification and shaping

Laser system for photocathode

A photocathode DC-Gun R&D

- Construction: ceramics, gun, power supply, beam line.....
- 1. Construction of each component is done
- 2. Vacuum in the gun achieves 6×10^{-10} Pa
- 3. Pressurized insulating gas: SF6

A photocathode DC-Gun R&D

- High voltage conditioning
- 1. The pressure of SF6 in the pressurized tank: 2.5atm
- 2. The vacuum interlock level is 4×10^{-6} Pa
- 3. After around 140 hours conditioning, HV reached up to 440kV that means a HV between cathode and anode is around 431kV (5000M Ω /5100M Ω)
- Then a huge radiation dose caused by field emission was found at one point of gun chamber. There is still a big dose even though reduce the HV to 250kV.
- 5. Open the gun chamber and repolish the cathode to remove FE source, then recover the vacuum
- 6. Re-conditioning up to 370kV (HV between cathode and anode is 362kV) without obvious dose
- 7. Next, beam operation @350kV

A photocathode DC-Gun R&D

- Photocathode development
- 1. A GaAs photocathode system was built up at first
- 2. Obtained a QE of ~10% after Cs/O activation
- 3. Dark lifetime can keep 1000hr with $QE \ge 1\%$
- 4. In recent, a K₂CsSb photocathode system was set up, growth experiment just started

GaAs photocathode system

K₂CsSb photocathode system

Mo substrate

650MHz SRF cavity and Cryomodule

• 650MHz SRF cavity design

Parameters	Value
R/Q (Ω)	213
G (Ω)	284
<i>E</i> p/ <i>E</i> acc	2.4
<i>B</i> p/ <i>E</i> acc [mT/(MV/m)]	4.2

	P(W)(U = 1 J)	Qe
Port 1	0.001867	2.19E12
Port 2	0.001352	3.02E12
Port 3	0.005441	7.51E11
Port 4	0.003435	1.19E12
Port 5	0.003320	1.23E12

Qe (all ports) : 2.65E+11. If Q0 = 4E10, then Q0 (measured) decrease to 3.48E10.

									1
0		.738E-07		.148E-06		.221E-06		.295E-06	-
	.369E-07		.111E-06		.185E-06		.258E-06		.332E-
CEONT-	0 1 1		0170400						

LFD

650MHz SRF cavity and Cryomodule

• 650 MHz Single Cell Cavity Test before N-doping

- Fine grain, BCP + 120 C bake 48 h
- $Q_0 = 4 \times 10^{10}$ @ Eacc=19.4MV/m
- Next step: cavity N-infusion; N-doping + EP

650MHz SRF cavity and Cryomodule

• CEPC full scale Prototype Cryomodule design and small Test Cryomodule for PAPS

CEPC full scale prototype cryomodule with 650 MHz 6 x 2-cell cavities

650MHz High Efficiency Klystron (CW 800kW and efficiency≥75%)

- R&D plan
 - 2017-2019 (Prototype 1)
 - Five fundamental cavities and One 2nd harmonic cavity
 - Design is already done and soon the fabrication will be started
 - Plan to finish assembling before December 2018
 - Installed on PAPS (beam test system) before June 2019
 - 600kW with 65% efficiency operation at PAPS
 - 2019-2021 (Prototype 2)
 - First option: Five fundamental cavities, One 2nd harmonic cavity and One 3rd harmonic cavity
 - Second option: 8/9 cavities by using BAC menthod or other methods
 - Finally, achieve 800kW output with efficiency \geq 75%

650MHz High Efficiency Klystron (CW 800kW and efficiency≥75%)

• Prototype 1: Electron gun simulation

CST

Туре	DGUN	EGUN	CST
Current(A)	15.12	14.88	14.88
Beam DIA(mm)	17.8	17.7	17.7
Perveance($\mu A/V^{3/2}$)	1.43	1.41	1.41

650MHz High Efficiency Klystron (CW 800kW and efficiency≥75%)

• Prototype 1: Beam trajectory

650MHz High Efficiency Klystron (CW 800kW and efficiency≥75%)

• Prototype 1: AJ disk 1d simulation result shows 74.55% efficiency

AJ disk design

650MHz High Efficiency Klystron (CW 800kW and efficiency≥75%)

Prototype 1: Full power (~1.23MW) collector design

Groove number	Groove dimensions(a:b)	Total water flow rate	Water pressure loss for smooth surface
180	1:2	1400kg/min	2.34E+4 Pa

Temperature and water pressure loss

Temperature on inner surface of copper domain and water domain

PSM (Pulse Step Modulation) Power Supply

- In ADS project, a 80kV/18A PSM power supply was developed for 325MHz 600kW klystron at IHEP
- In PAPS, a 120kV/16A PSM power supply will be developed for 650MHz 800kW klystron

ADS 80kV/18A PSM Power Supply

- PAPS introduction
- A Beam Test Facility for High Current Photoinjector
- Related Key Technologies Development
- Future plan
- Summary and Outlook

Future Plan

- First, construction and beam operation of beam test system at PAPS (2017.5-2020.6)
- After 2020, the hall for Magnet system will be free up. A compact test facility towards one machine, two purposes: using a common SC linac for XFEL and ERL simultaneously now is proposed at IHEP

- PAPS introduction
- A Beam Test Facility for High Current Photoinjector
- Related Key Technologies Development
- Future plan
- Summary and Outlook

Summary and Outlook

- A new project PAPS has been supported by Beijing Government from 2017.5-2020.6
- A beam test system based on photocathode DC Gun and 650MHz SRF will be constructed at PAPS
- Several related key technologies already been developed in recent years at IHEP, including photocathode DC Gun, 650MHz SRF cavities, High power high efficiency klystrons and its PSM power supply......

Thank you!