## PERLE – Beam Optics Design

#### **Alex Bogacz**



Operated by JSA for the U.S. Department of Energy

## **PERLE – Newly Proposed Test Facility**

arXiv.org > physics > arXiv:1705.08783v1

CDR

Physics > Accelerator Physics

#### PERLE: Powerful Energy Recovery Linac for Experiments - Conceptual Design Report

D. Angal-Kalinin, G. Arduini, B. Auchmann, J. Bernauer, A. Bogacz, F. Bordry, S. Bousson, C. Bracco, O. Brüning, R. Calaga, K. Cassou, V. Chetvertkova, E. Cormier, E. Daly, D. Douglas, K. Dupraz, B. Goddard, J. Henry, A. Hutton, E. Jensen, W. Kaabi, M. Klein, P. Kostka, F. Marhauser, A. Martens, A. Milanese, B. Militsyn, Y. Peinaud, D. Pellegrini, N. Pietralla, Y.A. Pupkov, R. A. Rimmer, K. Schirm, D. Schulte, S. Smith, A. Stocchi, A. Valloni, C. Welsch, G. Willering, D. Wollmann, F. Zimmermann, F. Zomer

(Submitted on 24 May 2017)

CELIA Bordeaux, MIT Boston, CERN, Cockcroft and ASTeC Daresbury, TU Darmstadt, U Liverpool, Jefferson Lab Newport News, BINP Novosibirsk, IPN and LAL Orsay

More on PERLE@Orsay from Walid Kaabi, tomorrow morning



Thomas Jefferson National Accelerator Facility

Operated by JSA for the U.S. Department of Energy

Alex Bogacz El

ERL'17, CERN, June 20, 2017

Search or

(Help | Advan

#### **PERLE** Downsizing



Operated by JSA for the U.S. Department of Energy

Alex Bogacz

## Overview

- PERLE@Orsay (400 MeV) Layout
  - Compact footprint (24 m × 5.5 m × 0.8 m)
- Multi-pass linac Optics in ER mode
  - Choice of symmetric 'drift linac' Optics: 3-pass 'up' + 3-pass 'down'
- Arc Optics Architecture
  - Isochronous Arcs with Flexible Momentum Compaction (FMC) Optics
  - Configured with two styles of 1.2 Tesla 'curved bends'
- Switchyard
  - Two-step, Vertical Spreaders/Recombiners with matching sections: Linacs-Arcs
- 'First cut' lattice design for PERLE@Orsay
  - Magnet inventory (Dipoles and Quads )
- Outlook Future R&D



Thomas Jefferson National Accelerator Facility

Operated by JSA for the U.S. Department of Energy

Alex Bogacz

#### PERLE@Orsay – Layout





**Thomas Jefferson National Accelerator Facility** 

Operated by JSA for the U.S. Department of Energy

Alex Bogacz

#### PERLE@Orsay – Layout





Thomas Jefferson National Accelerator Facility

Operated by JSA for the U.S. Department of Energy

Alex Bogacz

#### PERLE@Orsay – Site



Operated by JSA for the U.S. Department of Energy

Alex Bogacz

| TARGET PARAMETER                                          | VALUE  | 3                     |
|-----------------------------------------------------------|--------|-----------------------|
| Injection energy [MeV]                                    | 5      |                       |
| Maximum energy [MeV]                                      | 400    |                       |
| Normalised emittance $\gamma \varepsilon_{x,y}$ [mm mrad] | 6      |                       |
| Average beam current [mA]                                 | 15     | (300                  |
| Bunch spacing [ns]                                        | 25     | (20-th sub harmonics) |
| Bunch length (rms) [mm]                                   | 3      |                       |
| RF frequency [MHz]                                        | 801.58 |                       |
| Duty factor                                               | CW     |                       |



**Thomas Jefferson National Accelerator Facility** 



Operated by JSA for the U.S. Department of Energy

Alex Bogacz

#### PERLE@Orsay – Layout





### **Cost-effective Magnet Solution**



- Longer and curved bending magnets
- 2 different magnet types with same cross section (only the length changes)
- Only 1 magnet per bend with a deflection of 45°
- Reduction of magnet number (24 compared to 48), could help to reduce cost

| Arc | Energy<br>[MeV] | Count | angle<br>[deg] | В<br>[T] | L<br>[mm] | Curv.<br>radius<br>[mm] | Pole gap<br>[mm] | GFR<br>width<br>[mm] |     |
|-----|-----------------|-------|----------------|----------|-----------|-------------------------|------------------|----------------------|-----|
| #1  | 80              | 4     | 45             | 0.45     | 456       | 596                     | ±20              | ±20                  |     |
| #2  | 155             | 4     | 45             | 0.87     | 456       | 596                     | ±20              | ±20                  | MBA |
| #3  | 230             | 4     | 45             | 1.29     | 456       | 596                     | ±20              | ±20                  |     |
| #4  | 305             | 4     | 45             | 0.85     | 912       | 1191                    | ±20              | ±20                  |     |
| #5  | 380             | 4     | 45             | 1.06     | 912       | 1191                    | ±20              | ±20                  | MBB |
| #6  | 455             | 4     | 45             | 1.27     | 912       | 1191                    | ±20              | ±20                  |     |

### PERLE Magnet Design (dipoles and quads)

#### 70 dipoles 0.45-1.29 T

+- 20 mm aperture, l=200,300,400 mm

May be identical for hor+vert bend

7A/mm2 (in grey area) water cooled





114 quadrupoles max 28T/m

Common aperture of 40mm all arcs

Two lengths: 100 and 150mm

DC operated



P Thonet, A Milanese (CERN), C Vallerand (LAL), Y Pupkov (BINP)

#### Cryo-module – Layout and Cavity Specs





**Thomas Jefferson National Accelerator Facility** 



Operated by JSA for the U.S. Department of Energy

Alex Bogacz

#### Linac – Layout



#### **Multi-pass Linac ER Optics**





#### **Multi-pass ER Optics**



#### Arc 6 Optics – FMC Lattice



#### Arc 3 Optics – FMC Lattice



#### Switchyard – Vertical Separation of Arcs (1, 3, 5)



Dipoles: (20 and 40 cm long)

B = 0.8 Tesla



**Thomas Jefferson National Accelerator Facility** 

Operated by JSA for the U.S. Department of Energy

Alex Bogacz

#### Switchyard – Vertical Separation of Arcs (2, 4, 6)



**Dipoles:** (30 cm long) B = 1.2 Tesla



Thomas Jefferson National Accelerator Facility

Operated by JSA for the U.S. Department of Energy

Alex Bogacz

## Switchyard – Layout





Operated by JSA for the U.S. Department of Energy

Alex Bogacz

#### **Vertical Spreaders – Optics**



### Arc 1 Optics (71 MeV)



#### Pass up + Pass down

Pass-1 'up'



### **Magnet Inventory**

| Magnet Type          | Single Hor. Bend | Double Hor. Bend | Short B-com | Medium-Bcom | Short Ver. Bend | Medium Ver. Bend | Long Ver. Bend | Chicane Bend | Short Quad | Longer Quad |
|----------------------|------------------|------------------|-------------|-------------|-----------------|------------------|----------------|--------------|------------|-------------|
| Length [cm]          | 45.6             | 91.2             | 20          | 30          | 20              | 30               | 40             | 5            | 10         | 15          |
| Field [kGauss]       | 11.6             | 11.5             | 8.3         | 10.7        | 8.3             | 11.5             | 8.3            | 1.6          |            |             |
| Gradient [kGauss/cm] |                  |                  |             |             |                 |                  |                |              | 2.5        | 2.5         |
| S/R 1                |                  |                  |             |             | 6               |                  |                |              | 14         |             |
| Arc 1                | 4                |                  |             |             |                 |                  |                |              | 5          | 2           |
| S/R 2                |                  |                  |             |             |                 | 6                |                |              | 14         |             |
| Arc 2                | 4                |                  |             |             |                 |                  |                |              | 5          | 2           |
| S/R 3                |                  |                  |             |             | 6               |                  |                |              | 14         |             |
| Arc 3                | 4                |                  |             |             |                 |                  |                |              | 5          | 2           |
| S/R 4                |                  |                  |             |             |                 | 6                |                |              | 14         |             |
| Arc 4                |                  | 4                |             |             |                 |                  |                |              | 5          | 2           |
| S/R 5                |                  |                  |             |             | 2               |                  | 2              |              | 8          |             |
| Arc 5                |                  | 4                |             |             |                 |                  |                |              | 5          | 2           |
| S/R 6                |                  |                  |             |             |                 | 6                |                |              | 8          |             |
| Arc 6                |                  | 4                |             |             |                 |                  |                |              | 5          | 2           |
| Linacs               |                  |                  |             |             |                 |                  |                | 8            |            |             |
| Total                | 12               | 12               | 2           | 2           | 14              | 18               | 2              | 8            | 102        | 12          |
|                      |                  |                  |             |             |                 |                  |                |              |            |             |

Bends: 70 Quads: 114 1





## Outlook – R&D Program

- Liner lattice optimization Initial magnet specs
- Momentum acceptance and longitudinal match
- End-to-End simulation with synchrotron radiation, CSR micro-bunching (ELEGANT)
- Correction of nonlinear aberrations (geometric & chromatic) with multipole magnets (sext. octu.?)
- RF cavity design, HOM content BBU studies (TDBBU)
- Injection line/chicane design Space-charge studies at injection
- Diagnostics & Instrumentation
- Multi-particle tracking studies of halo formation
- Final magnet specs
- Engineering design

**Thomas Jefferson National Accelerator Facility** 



Operated by JSA for the U.S. Department of Energy

ab

Jeffe

Alex Bogacz

## Summary

- PERLE@Orsay (400 MeV)
  - 'lean design', fewer magnet varieties, 1.2 Tesla curved bends
- Multi-pass linac Optics in ER mode
  - Linear lattice: 3-pass 'up' + 3-pass 'down'
- Arc Optics Choice
  - Flexible Momentum Compaction Optics
- Modular Arc Architecture
  - Vertical switchyard
  - Matching sections: Linac-Switchyard-Arc
- 'First cut' linear lattice design
  - Magnet inventory
  - Dipole and Quad design
- Vigorous R&D Program Ahead…

**Thomas Jefferson National Accelerator Facility** 



Operated by JSA for the U.S. Department of Energy

Jeffer

Alex Bogacz

# Thank you!



**Thomas Jefferson National Accelerator Facility** 



# **Special Thanks to:**

Oliver Brüning Erk Jensen Max Klein and

#### Alessandra Valloni



**Thomas Jefferson National Accelerator Facility** 

