

The Potential of Nb/Cu Technology for High Beam Current Applications Sarah Aull, CERN

Acknowledgements CERN BE-RF CERN TE-VSC Jefferson Lab

Challenges of High Current Applications

High beam current induces high HOM losses

$$P_{\rm HOM} \sim I_{\rm beam}^2 \frac{1}{R_{\rm iris}} k_{\rm loss} (f)$$

Challenges of High Current Applications High beam current induces high HOM losses $P_{\rm HOM} \sim I_{\rm beam}^2 \frac{1}{R_{\rm iris}} k_{\rm loss} (f)$ **Mitigation** bigger aperture low frequency 4.5 K operation

Challenges of High Current Applications

Higher cw power for lower frequencies

Maximum power level of FPC restricts usable accelerating gradient

High beam current applications such as energy recovery linacs favour low frequency cavities and 4.5 K operation

High beam current applications such as energy recovery linacs favour low frequency cavities and 4.5 K operation

A case for niobium-on-copper

ERL Workshop 20th June 2017

The History of Nb/Cu

In the 1980ies SRF cavities were limited by thermal breakdown

The History of Nb/Cu

In the 1980ies SRF cavities were limited by thermal breakdown Increase thermal conductivity of bulk niobium:

RRR 300 as standard material

The History of Nb/Cu

In the 1980ies SRF cavities were limited by thermal breakdown

Increase thermal conductivity of bulk niobium:

RRR 300 as standard material

Take advantage of the high thermal conductivity of copper and deposit a micrometer thick niobium film

ERL Workshop 20th June 2017

ERL Workshop 20th June 2017

ERL Workshop 20th June 2017

ERL Workshop 20th June 2017

Cause of the Q-Slope

Small defects at the Nb-Cu interface lead to microscopic quenches which cause the Nb/Cu Q-slope.

 $Q(E_{acc})$ curve can be described via a distribution function of thermal contact resistances.

How to Cure the Q-Slope

Improve Nb-Cu interface on microscopic scale

ERL Workshop 20th June 2017

ERL Workshop 20th June 2017

9

4087

2010)

How to Cure the Q-Slope

Improve Nb-Cu interface on microscopic scale

From Sputtering to Energetic Condensation Techniques

dc Magnetron Sputtering

From Sputtering to Energetic Condensation Techniques

dc Magnetron Sputtering

Electron Cyclotron Resonance

First ECR results

Significantly improved slope for flat ECR surface.

At 400 MHz & 4 K comparable to bulk Nb

ERL Workshop 20th June 2017

First ECR results

Significantly improved slope for flat ECR surface.

At 400 MHz & 4 K comparable to bulk Nb

Cryogenic Consumption for LHeC/FCC-he

ERL injector baseline for LHeC and FCC-he: 60 GeV, 6 mA

RL Workshop 20th June 2017

Cryogenic Consumption for LHeC/FCC-he

ERL injector baseline for LHeC and FCC-he: 60 GeV, 6 mA

Cryomodule Production Cost

Cryomodule Production Cost

The cost for a CM with 400 MHz Nb/Cu cavities is about 20 % less than for a CM with 800 MHz bulk Nb cavities

Back to applications: Crab Cavities

Energetic condensation techniques open also the door towards coating more complex shapes, such as crab cavities*.

* WOW cavity will be sputter-coated

Summary

Nb/Cu technology can offer great benefits over bulk Nb:

operation at 4.5 K while thermally stable

reduced CM cost & simpler design

Energetic condensation techniques promise significantly improved performance High beam current applications could benefit from:

low frequency cavities to increase aperture and reduce HOM power

simpler HOM extraction

Summary

Nb/Cu technology can offer great benefits over bulk Nb:		High beam curr	rent applications Id benefit from:
operation at 4.5 K while thermally stable If the Nb/Cu R reduced CM cost & sin colliders is st	&D ucce	for high energy pe essfull, the ERL	uency cavities to ture and reduce HOM power
Energetic conde promise significa performance	vill k	oenefit as well. simpler	HOM extraction

