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Challenges of High Current Applications

High beam current induces high HOM losses
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High beam current induces high HOM losses
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Challenges of High Current Applications

Higher cw power for
lower frequencies
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High beam current applications such as energy recovery
linacs favour low frequency cavities and 4.5 K operation




High beam current applications such as energy recovery
linacs favour low frequency cavities and 4.5 K operation

A case for niobium-on-copper




The History of Nb/Cu

In the 1980ies SRF
cavities were limited by
thermal breakdown
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Increase thermal conductivity of
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RRR 300 as standard material




The History of Nb/Cu

Increase thermal conductivity of
bulk niobium:

In the 1980ies SRF RRR 300 as standard material

cavities were limited by
thermal breakdown

Take advantage of the high thermal
conductivity of copper and deposit
a micrometer thick niobium film




Nb/Cu for Particle Accelerators

LEP2 352 MHz [
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LEP2 352 MHz

LHC 400 MHz.
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Differences between Bulk Nb and Nb/Cu
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Differences between Bulk Nb and Nb/Cu
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Differences between Bulk Nb and Nb/Cu
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Differences between Bulk Nb and Nb/Cu

Additional Residual Resistance [nQ]

12 - : : :
‘0.194L s
10+ N .
; ns2
8l /" |
- 0.04 4L
6 ’ TLQ ]
4t
2 | A
,4 } Nb Film
N | | | | ¢ bulk Nb |
0 50 100 150 200 250 300

Applied DC Magnetic Field [pT]

Very low
residual
resistance

Moo XX
l‘fh‘gb_‘.\bulko
k.l

*

5 ' 1I0 ' 1I5 ' 2I0 ‘ 2I5
E,. [MV/m]



Cause of the Q-Slope

Small defects at the Nb-Cu interface
lead to microscopic quenches which
cause the Nb/Cu Q-slope.

Q(Eacc) curve can be described via a g -{ﬂﬂl
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How to Cure the Q-Slope

Improve Nb-Cu interface on
microscopic scale

Courtesy P. Jacob




How to Cure the Q-Slope
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From Sputtering to Energetic Condensation Techniques

Nb Cathode Cu Substrate

dc Magnetron Sputtering




From Sputtering to Energetic Condensation Techniques
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First ECR results
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Cryogenic Consumption for LHeC/FCC-he

ERL injector baseline for LHeC and FCC-he: 60 GeV, 6 mA
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Cryogenic Consumption for LHeC/FCC-he

ERL injector baseline for LHeC and FCC-he: 60 GeV, 6 mA
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Cost
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Cryomodule Production Cost

Bare Cavity 3 Cryo Valves
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Back to applications: Crab Cavities

Energetic condensation
techniques open also the door
towards coating more complex
shapes, such as crab cavities™.

H Field

* WOW cavity will be sputter-coated A Grudiev et al. SRF 2015
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Summary

Nb/Cu technology can offer great
benefits over bulk Nb:

operation at 4.5 K while thermally
stable

reduced CM cost & simpler design

Energetic condensation techniques
promise significantly improved
performance

High beam current applications
could benefit from:

low frequency cavities to
increase aperture and reduce
HOM power

simpler HOM extraction
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Summary

Nb/Cu technology can offer great ‘ ‘ High beam current applications
benefits over bulk Nb: ~onld benefit from:

operation at 4.5 lency cavities to

stable If the Nb/Cu R&D for high energy ture and reduce
reduced CM cosf colliders is successfull, the ERL HOM power

Energetic conde community will benefit as well.

promise significz
performance ‘ ‘

HOM extraction
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