

Cornell ERL CM Performance

Fumio Furuta Cornell University

ff97@cornell.edu

ERL17,WG4.2 SRF: Cavity performance, 20June2017

- Introduction
- Initial commissioning
- Beam through test
- Summary

Introduction

MLC design

Number of 7-cell cavities 6 Number of HOM loads 7 Acceleration gradient 16.2 MV/m HOM power per cavity 200 W R/Q 774 Ohm Couplers per cavity 1 6.5 x 10⁷ RF powere per cavity 10 kW max. Qext 10⁻⁴ / 0.05° (rms) Total 2K / 5K / 80K loads: 76W / 70W / 1500W • Amplitude/phase stability 9.8 m Module length

Cavity RF surface preparations: bulk BCP, 650C outgassing, final BCP, 120C bake, HF rinse

MLC initial commissioning

ERL17, WG4.2 SRF: Cavity performance, 20June2017

MLC at its final location, 2017

ERL17,WG4.2 SRF: Cavity performance, 20June2017

MLC initial commissioning

MLC initial RF test; cavity gradient

• The MLC can provide 76MeV per ERL turn, which significantly exceeds the CBETA requirement of 36MeV per ERL turn.

MLC initial RF test; Q_0 at 1.8K

currents in horizontal test which resulted in high Q_0 of cavities in the MLC.

MLC slow tuner test

CBETA will have to run somewhat below 1.3GHz since some of the MLC cavities can not be tuned that far.

MLC HOM scan and analysis

Initial LLRF tests

ff97@cornell.edu

Detuning measurements in the initial MLC location

- Average peak detuning of stiffened cavity: ~40Hz, un-stiffened cavity: ~100Hz, during the initial test, <u>but no optimisations or no fast tuner compensations at the moment.</u>
- Detuning has been measured again at final MLC location.
- LLRF optimizations and microphonics compensations with piezoelectric fast tuner is in progress.

Mechanical vibration sources

 Optimization on the MLC cooling scheme and compensation of microphonics with piezoelectric fast tuner are in progress during initial MLC beam through test.

initial beam testing!

RF power requirements

Calculation of the maximum energy gain of the MLC

Based on these calculations and making allowance for the higher microphonics levels of the un-stiffened cavities,

three 5kW solid state RF amplifiers (SSAs) for stiffened cavities

- three 10kW SSAs for the un-stiffened cavities were selected to be ordered.

•

•

•

•

MLC is,,,

What we learned/done during the initial commissioning?

Cryomodule cooldown procedure Evaluate cavity performances, voltage and quality factor Thermal cycle effects on cavity performances RF Component tests; slow tuner, HOM absorbers LLRF and Microphonics study Analysis of vibration sources on microphonics RF power requirement

The MLC is ready for initial beam!

MLC moving on Feb. 8th 2017

LOE before/after

MLC at initial test location

MLC was moved into its final location on Feb. 8th 2017

MLC beam through test

Cornell ERL high voltage DC gun and Injector Cryomodule (ICM) were connected to the MLC via the entry beam line; the beam stop assembly was also installed as the exit line.

Accelerate beam through the MLC

ERL17,WG4.2 SRF: Cavity performance, 20June2017

Beam stop assembly

Beam through the MLC

First beam through the MLC on May 4th, 2017

Machine setting

- 300kV gun
- Frequency; 1.3GHz
- 6MeV from ICM
- 15nA (3pC x 50MHz x 0.01%)
- MLC RF turned Off

",, After opening gate valve, required about 30 seconds to steer through the MLC,, "

Beam operation, images, by Adam Bartnik

Acceleration test; MLC cavity#5

9MeV beam through the MLC, limited by microphonics

Machine setting

- 300kV gun
- Frequecny; 1.3GHz
- 6MeV from ICM
- 3MeV from MLC cavity#5 (un-stiffened)

Scrn shot image

- Cavity#5 was tested first, but limited by microphonics and LFD.
- Preliminary detuning measurement was done.
- Microphonics study, LLRF optimization have been continued.
- we will revisit cavity#5 later.

Acceleration test; MLC cavity#2

12MeV beam through the MLC on May 15th, 2017

Machine setting

- 300kV gun
- Frequecny; 1.3GHz
- 6MeV from ICM
- 6MeV from MLC cavity#2 (stiffened)

Preliminary

- Field amplitude/phase stability measured Amplitude: 0.02%, rms Phase: 0.5 degrees, rms (note: did not try to optimize, just measure)
- LFD compensation has been implemented and tested.
- Preliminary detuning measurement was done.

Long term stability

Acceleration test; MLC cavity#6

12MeV beam through the MLC on June 15th, 2017

Machine setting

- 300kV gun
- Frequency; 1.299925GHz, due to the tuning range of MLC cavity #6
- Run ICM with ICM cavity#2 turned off, due to the incompatible tuning ranges of ICM cavity #2 and MLC cavity #6.
- 6MeV from ICM (cavity#1, #3, #4, and #5)
- 6MeV from MLC cavity#6 (stiffened)
- LFD compensation has been implemented and tested.
- Preliminary detuning measurement was done.

This is the final planned 12 MeV beam test involving the MLC for this operation period.

This test establishes that all the various accelerator components can operate at the lower master clock frequency ,,,,

After this, any further tests of the MLC will be performed without beam. we will switch to 6 MeV beam operation in the newly constructed diagnostic line, or operation through the MLC without any MLC acceleration.

By Adam Bartnik, ELOG entry on 2017-06-15

Microphonics detuning meas.

Plots by N. Banerjee (Graduate student)

- Cavity #5 (un-stiffened); Events correspond to cycling of the Pre-cool valve. Cryogenic valves will be static for beam running and helium liquid level will be regulated with a 2K 2-Phase heater. We will revisit cavity#5 later, and resolve this by cryo optimization.
- Cavity #2 (stiffened) is less sensitive to the valve.
- Major contributions at 40 Hz and 80 Hz, these are probably driven by 5K Helium gas flow.
- Cavity #6; There is a strong intermittent source of vibration around 8 Hz which is weak in other cavities.

Detuning vs. Cavity Voltage

Plot by N. Banerjee (Graduate student)

Microphonics compensation

Low frequency compensation:

$$u_{\rm pz}(t) = K_P \delta f(t) + K_I \int_0^t \delta f(t') dt'$$

Where, the detuning is passed through a low pass filter with cut-off at 30 Hz to enhance stability of the loop.

MLC cavities status

Preliminary

MLC cavity	Beam acceleration? (frequency)	Cavity Voltage	Max. Microphonics detuning	Active compensation	notes
Cavity#5, un-stiffened	Yes (1.3GHz)	3MV	163Hz	Νο	9MeV Beam through on May 10 th , revisit later
Cavity#2, stiffened	Yes (1.3GHz)	6MV	18Hz	Yes	12MeV Beam through on May 15 th
Cavity#6, stiffened	Yes (1.299925GHz)	6MV	33Hz	Yes	12MeV Beam through on June 15 th .
Cavity#3, un-stiffened	Detuning meas., microphonics study and compensations are planed				
Cavity#1, un-stiffened					
Cavity#4, Stiffened					

Year	Month	Items			
2017	June	LLRF optimization microphonics study and compensation beam through MLC test			
July August September	July	NO RF test due to water shutdown			
	1 ST SSA delivery will be the end of August				
	September	microphonics study and compensation			
	October	SSA installation, initial commissioning with wave guide All SSA will be delivered by the end of the year			
November December	November				
	December	Multi MLC cavity operation with SSAs			
2018	January				
	February				
	March				
	April	Fractional Arc Test			

- Commissioning of the 7-cell cavities in the MLC had been done successfully, the cavities can provide an energy gain of up to 76MeV per ERL turn.
- The nominal energy gain of 36 MeV per pass for the CBETA project could be reached with the available RF power at the measured initial microphonics levels.
- The MLC was moved to its final location and cooled down to 1.8K again.
- A beam with a total energy gain of 12MeV was transported through the MLC, including active detuning compensation using the piezoelectric tuner, reaching the defined goal for the initial CBETA beam test.
- Microphonics meas./study/compensation has been performed on cavity#5, #2, and #6. Next microphonics study on MLC Cavity#3 (un-stiffened) will provide deeper perspective of the MLC operation for CBETA.
- The next milestone of the MLC is to demonstrate/confirm the MLC could regulate the 1st pass energy gain of 36MeV in total.

Thanks to the ERL team

Active compensations

Special thanks to Nilanjan Banerjee, Adam Bartnik, John Dobbins, Peter Quigley, and Vadim Veshcherevich.

