Fermilab **Energy** Office of Science

High-Q R&D at FNAL

Mattia Checchin Performance frontier group, SRF sector, TD ERL 2017 20 June 2017

Superconducting RF resonators

- EM field resonates efficiently with very low dissipation
- Performance defined by the first hundreds of nanometers form the RF surface (λ), where the current flows
- $R_s(T) = R_{BCS}(T) + R_{res}$
- High $Q_0 \Rightarrow$ minimization of $R_{BCS}(T)$ and R_{res}

Why high-Q?

High *Q*₀ studies at FNAL **N-doping & N-infusion**

High Q_0 treatments studied at FNAL

- <u>N-doping</u>
 - <u>High T treatment</u> in HV with N_2
 - N₂ injection done at T = 800 1000 C for 2 20 min
 - Successfully implemented on large scale production (LCLS-II)

<u>N-infusion</u>

- Low T treatment in HV with N_2
- N_2 injection done at T = 120 160 C for 48 96 h
- Being deeply investigated

High Q₀ treatments studied at FNAL

- <u>N-doping</u>
 - <u>High T treatment</u> in HV with N_2
 - N_2 injection done at T = 800 1000 C for 2 20 min
 - Successfully implemented on large scale production (LCLS-II)

<u>N-infusion</u>

- Low T treatment in HV with N_2
- N₂ injection done at T = 120 160 C for 48 96 h
- Being deeply investigated

N-doping: reversal of BCS surface resistance

$$R_s(T) = R_{BCS}(T) + R_{res}$$

Anti-Q-slope emerges from the BCS surface resistance <u>decreasing with</u> <u>RF field</u>

A. Grassellino *et al.*, Supercond. Sci. Technol. **26** 102001 (2013) - Rapid Communications
A. Romanenko and A. Grassellino, Appl. Phys. Lett. **102**, 252603 (2013)
M. Martinello *et al.*, App. Phys. Lett. **109**, 062601 (2016)

High Q₀ treatments studied at FNAL

- N-doping
 - <u>High T treatment</u> in HV with N_2
 - $-N_2$ injection done at T = 800 -1000 C for 2 – 20 min
 - Successfully implemented on large scale production (LCLS-II)

<u>N-infusion</u>

- <u>Low T treatment</u> in HV with N_2
- $-N_2$ injection done at T = 120 -160 C for 48 – 96 h
- Being deeply investigated

N-infusion: a larger parameter space to be explored

🛟 Fermilab

A. Grassellino et al., arXiv:1701.06077 (submitted to SUST)

120 C N-infusion: high Q_0 at high gradients

Higher Q-factor at higher field may allow for higher duty-cycles and therefore higher luminosity!

🚰 Fermilab

A. Grassellino et al., arXiv:1701.06077 (submitted to SUST)

Nitrogen role in N-infusion

No nitrides formation at the RF surface

A. Grassellino et al., arXiv:1701.06077 (submitted to SUST)

- Higher N₂ background than not infused samples
- Small ($\sim 1 2 nm$) N₂ enriched layer below native oxide
- SIMS data suggest that performances are related to the first nm from the RF surface
- Being investigated with subsequent HF rinsing experiment

Q₀ preservation Understanding the trapped flux surface resistance

Trapped flux surface resistance

$$R_s(T,B) = R_{BCS}(T) + R_{fl}(B) + R_0$$

 $R_0 \Rightarrow$ intrinsic residual resistance

 $R_{fl} = \eta_t SB \Rightarrow$ trapped magnetic flux surface resistance:

If pinned, vortices may survive in the Meissner state introducing dissipation

 T_{c_1}

- η_t —flux trapping efficiency
- *S*—trapped flux sensitivity
- *B*—external magnetic field

Trapped flux surface resistance contributions

 $R_{fl} = \eta_t S B$

 R_{fl} can be reduced by minimizing these contributions:

Trapped flux surface resistance contributions

 $R_{fl} = \eta_t S B$

 R_{fl} can be reduced by minimizing these contributions:

Minimization of remnant field in the cryomodule

Trapped flux surface resistance contributions

 $R_{fl} = \eta_t S B$

 R_{fl} can be reduced by minimizing these contributions:

Magnetic field redistribution after SC transition

Fast cooldown helps flux expulsion

- Fast cool-down: large thermal gradients
 → efficient flux expulsion
- Slow cool-down: small thermal gradients
 > noor flux expulsion

 \rightarrow poor flux expulsion

A. Romanenko *et al.*, Appl. Phys. Lett. **105**, 234103 (2014)
A. Romanenko *et al.*, J. Appl. Phys. **115**, 184903 (2014)
D. Gonnella *et al.*, J. Appl. Phys. **117**, 023908 (2015)
M. Martinello *et al.*, J. Appl. Phys. **118**, 044505 (2015)
S. Posen *et al.*, J. Appl. Phys. **119**, 213903 (2016)
S. Huang *et al.*, Phys. Rev. Accel. Beams **19**, 082001 (2016)

Thermodynamic force during cooldown

The Gibbs free energy density defines the stability of vortices in the SC:

$$g = B(H_{c_1}(T) - H)$$

We can define the *thermodynamic force* acting on the vortex as:

$$f = -\frac{\partial g}{\partial x} = -\frac{\partial g}{\partial T}\frac{\partial T}{\partial x}$$

M. Martinello, M. Checchin *et al.*, to be published

g(H)

Critical thermal gradient

The *pinning force acting against the expulsion* is defined in terms of critical current density J_c :

$$f_p = |\bar{J}_c \times n\bar{\Phi}_0| = J_c B$$

The *minimum thermal gradient needed to expel vortices* is the critical thermal gradient ∇T_c :

$$\nabla T_c = \frac{J_c T_c^2}{2H_{c_1}(0)T}$$

$$\nabla T_c \propto J_c \propto f_p$$

M. Martinello, M. Checchin *et al.*, to be published

Statistical model for the expulsion ratio

→ the probability of expelling vortices with the thermal gradient ∇T_{c_i} is $P(\nabla T_{c_i})$, hence the expulsion ratio is:

For TESLA shape

$$B_{sc}/B_{nc} = 1 + 0.74 \cdot P(\nabla T_{c_i})$$

The model predicts $\langle J_c \rangle$ in agreement with literature^{1,2}:

Cavity name	$\langle J_c \rangle (A/mm^2)$
CBMM	0.3
ACC002	1.6

M. Martinello, M. Checchin *et al.*, to be published Data: S. Posen *et al.*, J. Appl. Phys. **119**, 213903 (2016) ¹ G. Park *et al.*, Phys. Rev. Lett. **68**, 12 (1992) ² L. H. Allen and J. H. Claassen, Phys. Rev. B **39**, 4 (1989)

Trapped flux surface resistance contributions

 $R_{fl} = \eta_t S B$

 R_{fl} can be reduced by minimizing these contributions:

Light doping to minimize trapped flux sensitivity

🛠 Fermilab

24 Mattia Checchin I ERL 2017 I 20-Jun-2017

Single vortex equation of motion

The motion equation has form:

 $M(l)\ddot{x} + \eta(l)\dot{x} + p(z,l)x = j_0\phi_0\sin(\theta)e^{i\omega t - z/\lambda(l)}$

z [nm]

The solution is valid from z = 0 to $z \rightarrow \infty$

- The pinning potential assumed is a 2D
 Lorentzian function
 ⇒ parabolic approximation along x
- The pinning constant p(z, l) is depthdependent
 ⇒ flexible vortex line
- Multiple pinning centers can be considered

M. Checchin et al., Supercond. Sci. Technol. 30, 034003 (2017)

U_ (x,z)

Sensitivity vs mean-free-path

• Small $l - \underline{pinning regime} \eta \ll p$:

$$\rho_1(l, U_0) \approx \frac{\eta(l)}{p(l, U_0)^2}$$

 ρ_1 increases with l and ω^2 , decreases with the increasing of U_0

• Large $l - \underline{flux-flow \ regime} \ \eta \gg p$:

$$\rho_1(l)\approx \frac{1}{\eta(l)}$$

 ρ_1 decreases with l , independent on ω and U_0

M. Checchin *et al.*, Supercond. Sci. Technol. **30**, 034003 (2017) Data: M. Martinello *et al.*, App. Phys. Lett. **109**, 062601 (2016)

Sensitivity vs frequency

- Small l $\underline{pinning\ regime}\ \eta \ll p$: $\rho_1(\omega) \approx \omega^2$ $\rho_1\ increases\ with\ \omega^2$
- Large $l \underline{flux-flow\ regime}\ \eta \gg p$: $\rho_1 = constant$

 ho_1 independent on ω

- The higher *f* the higher the sensitivity peak
- Lower frequencies are favorable to minimize the sensitivity

M. Checchin et al., Supercond. Sci. Technol. 30, 034003 (2017)

Summary State-of-the-art surface treatment for high Q_0 at 1.3 GHz

Q_0 in condition of full flux-trapping @ 1.3 GHz

Q_0 in condition of full flux-trapping @ 1.3 GHz

LCLS-II prototype cryomodule test at FNAL

LCLS-II spec: 2.7×10^{10} at 16 MV/m

Cavity	Usable Gradient* [MV/m]	Cryomodule Q₀ @16MV/m** Fast Cool Down
TB9AES021	18.2	2.6e10
TB9AES019	18.8	3.1e10
TB9AES026	19.8	3.6e10
TB9AES024	20.5	3.1e10
TB9AES028	14.2	2.6e10
TB9AES016	16.9	3.3e10
TB9AES022	19.4	3.3e10
TB9AES027	17.5	2.3e10
Average	18.2	3.0e10
Total Voltage	148.1 MV	

Acceptance = 128 MV

- * Radiation <50 mR/h
- ** TB9AES028 $\rm Q_0$ was at 14 MV/m

courtesy of G. Wu

Frequency dependence study

We are now extending the same study to *different frequencies* and *many surface treatments* (EP, 120 C bake, N-doping and N-infusion)....

The initial results are extremely interesting....**STAY TUNED!**

Conclusions

Conclusions

- N-doping and N-infusion both increases Q_0
- $R_{fl} = \eta_t S B$ can be minimized by:
 - \rightarrow Efficient magnetic field shielding (low *B*)
 - → Fast cooling, minimize pinning (low η_t)
 - \rightarrow Decreasing as much as possible the sensitivity (low S)
- Two different regimes of vortex dissipation
 - $\rightarrow~$ Small l , $\underline{pinning~regime}:\rho_1$ increases if $l\uparrow,\omega^2\uparrow$ and $U_0\downarrow$
 - → Large l , <u>flux-flow regime</u>: ρ_1 decreases if $l\uparrow$, but independent on ω and U_0
- Only by understanding R_{fl} N-doping could be successfully implemented to mass production

 \rightarrow LCLS-II cryomodule specification exceeded

Thank you for the attention

Fermilab

Back-up slides

N-infusion thermal process

- Bulk electro-polishing
- High T furnace with caps to avoid furnace contamination:
 - 3h @ 800C in HV
 - 48h @ 120-160 C with N₂ (25 mTorr)
 - Optional annealing 48h
 @ 120-160 C
- NO chemistry post furnace
- HPR, VT assembly

A. Grassellino et al., arXiv:1701.06077 (submitted to SUST)

Protective caps and foils are BCP'd prior <u>to every furnace cycle</u> and assembled in clean room, prior to transporting the cavity to furnace area

Statistical definition of trapping efficiency

 $p(\nabla T_c)$

- The probability of expelling vortices with the thermal gradient ∇T_{c_i} is $P(\nabla T_{c_i})$
- Α $P(\nabla T_{c_i})$

• The trapping efficiency
$$\eta_t$$
 is function of ∇T_{c_i} :

$$\eta_t = \left[1 - P(\nabla T_{c_i})\right]$$

$$P(\nabla T_{c_i}) = \int_0^{\nabla T_{c_i}} p(\nabla T_c) \, d\nabla T_c$$

• The trapped field is then:

$$B_t = \eta_t B = B \left[1 - P \left(\nabla T_{c_i} \right) \right]$$

M. Martinello, M. Checchin et al., to be published

$$\nabla T_{c_i} \quad \nabla T_{c}$$
For TESLA shape
$$\frac{B_{sc}}{B_{nc}} = 1 + 0.74 \cdot P(\nabla T_{c_i})$$

Double-peaked probability density function

- Double distribution of pinning centers (e.g. dislocations + grain boundaries)
- $p(\Delta T_c \rightarrow 0) \neq 0 \Rightarrow$ finite probability that vortices are not pinned
- First plateau defined by the ratio of the two peaks' area
- Complete flux expulsion reached when ΔT_c is larger enough so that $P(\Delta T_c) = 1$

M. Martinello, M. Checchin et al., to be published

High T baking effects

High T baking effects:

Pdf before/after 1000 C annealing example

Pinning potential

The smaller l, the steeper the potential:

Vortex surface impedance

The *complex resistivity* of the vortex line follows from the calculation of the apparent power (active plus reactive power) :

$$\rho(z,l) = \rho_1 + i\rho_2 = \frac{\phi_0^2 \sin^2(\theta)}{\pi \xi_0^2 [(p - M\omega^2)^2 + (\eta\omega)^2]} [\eta\omega + i(p - M\omega^2)]$$

The vortex surface impedance (using the classic definition of Z) is then:

$$Z(l) = \frac{\pi \xi_0^2 B}{\phi_0} \int_0^{q_0^{\vee}} \int_{U_{0_0}^{\wedge}}^{q_n^{\vee}} \cdots \int_0^{q_n^{\vee}} \int_{U_{0_n}^{\wedge}}^{U_{0_n}^{\vee}} \frac{\prod_{i=0}^n \Gamma(q_i) \Lambda(U_{0_i})}{\int_0^L \frac{e^{-z/\lambda}}{\rho(z,l)} dz} dU_{0_0} dq_0 \cdots dU_{0_n} dq_n$$

Number of
vortices B/B_{vortex} Vortex impedance weighted over normal
distributions of pinning positions and strengths

🚰 Fermilab

M. Checchin et al., Supercond. Sci. Technol. 30, 034003 (2017)

Pinning strength dependence

The higher the pinning force, the more constrained the oscillation

Dirtier or more defective materials (e.g. <u>thin films</u>) have larger pining strength

Lower sensitivity!

By increasing the pinning force of one order of magnitude the <u>sensitivity is 7 times smaller</u>!

M. Checchin et al., Supercond. Sci. Technol. 30, 034003 (2017)

Sensitivity vs pinning site depth

- Vortex dissipation is a *near-surface property*
- The pinning site distance from the surface q_0 determines the resistance
- For instance, if l = 70 nm:
 - $q_0 \cong 15 \ nm \Rightarrow$ sensitivity is the lowest
 - $q_0 > 400 nm \Rightarrow constant$ sensitivity
 - <u>bulk pinning does not affect</u> <u>the vortex oscillation</u>!

 \Rightarrow S is a near surface property!

