Applications for CBETA at Cornell

ERL workshop 07/19/2017

Georg Hoffstaetter (Cornell)

CBET

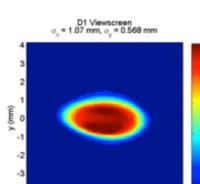
CORNELL-BNL ERL TEST ACCELERATOR

HERRICH HILLING HILLING Pinnanananan and a state of the state of the

and the second se

Cornell Laboratory for Accelerator-based Sciences and Education (CLASSE)

a passion for discovery



Tested

- Cornell DC gun
- 100mA, 6MeV SRF injector (ICM)
- 600kW beam dump
- 100mA, 6-cavity SRF CW Linac (MLC)

6 MeV

x (mm)

Image of first 12 MeV beam, delivered through MLC

CBET

Electron Current up to 320mA in the linac Bunch charge Q of up to 2nC Bunch repetition rate 1.3GHz/N Beams of 100mA for 1 turn and 40mA for 4 turns

CORNELL-BNL ERL TEST ACCELERATOR

+/- 36 MeV

42, 78, 114, 150 MeV

CHININ MININ

Georg.Hoffstaetter@cornell.edu - June 20, 2017 - CBETA Collaboration meeting

HHHHHH

The CBETA Collaboration

Background for CDR

Wrote PDDR for hard X-ray ERL at Cornell in 2012.

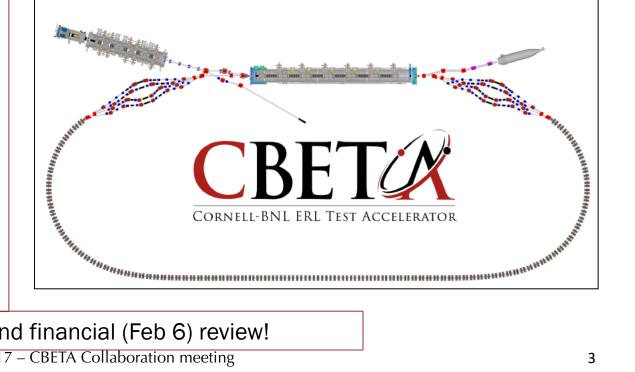
Start of CBETA July 2014 White paper December 2014

Defined CBETA in a white paper in December 2014.

CDR for CBETA in with Hybrid permanent magnets in July 2016.

Secured funding October 2016

DR for CBETA with Halbach magnets in February 2017


CBETA Design Report

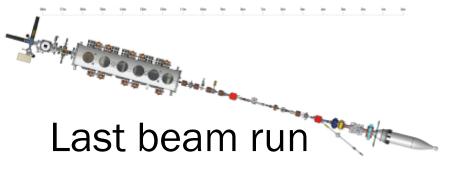
Cornell-Brookhaven ERL Test Accelerator

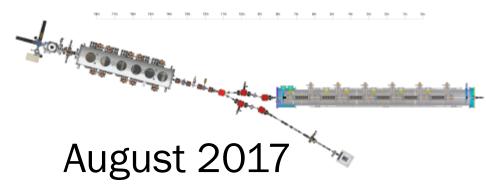
Principal Investigators: G. Hoffstaetter and D. Trbojevic

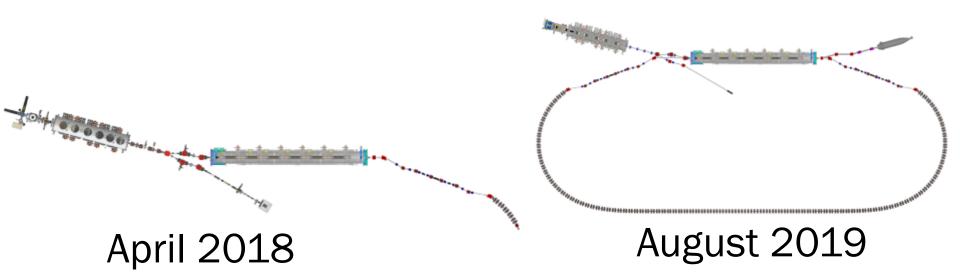
Editor: C. Mayes

Contributors: J. Barley, I. Bazarov, A. Bartnik, I. Ben-Zvi, J. S. Berg, M. Blaskiewicz, S. Brooks, D. Burke, J. Crittenden, J. Dobbins, D. Douglas, B. Dunham, R. Eichhorn, F. Furuta, C. Franck, R. Gallagher, C. Gulliford, B. Heltsley, G. Hoffstaetter, V. Kostroun, Y. Li, M. Liepe, W. Lou, G. Mahler, C. Mayes, W. Meng, F. Méot, R. Michnoff, M. Minty, S. Panuganti, R. Patterson, S. Peggs, V. Ptitsyn, T. Roser, D. Sabol, E. Smith, K. Smolenski, P. Thieberger, J. Tuozzolo, D. Trbojevic, N. Tsoupas, G. Wang, H. Witte, W. Xu

Past first technical (Jan 31st) and financial (Feb 6) review!




#	Milestone (at the end of months)	Baseline	Actual
	Funding start date		Oct-16
1	Engineering design documentation complete	Jan-17	
2	Prototype girder assembled	Apr-17	
3	Magnet production approved	Jun-17	
4	Beam through Main Linac Cryomodule	Aug-17	
5	First production hybrid magnet tested	Dec-17	
6	Fractional Arc Test: beam through MLC & girder	Apr-18	
7	Girder production run complete	Nov-18	
8	Final assembly & pre-beam commissioning complete	Feb-19	
9	Single pass beam with factor of 2 energy scan	Jun-19	
10	Single pass beam with energy recovery	Oct-19	
11	Four pass beam with energy recovery (low current)	Dec-19	
12	Project complete	Apr-20	



Beam Commissioning

Push toward 4-tunr ERL thereafter (April 2020)

- DarkLight an experiment to find dark matter particles
- Compact Compton source for hard x-rays complementing CHESS' range
- THz laser complementing CHESS' range
- Beam for time-resolved electron diffraction from 1-6MeV
- Beam for Plasma Wakefield Acceleration with High Transformer Ratio
- eRHIC accelerator testing more detailed eRHIC R&D
- eRHIC cavity testing with beam
- ASML medical isotope cavity testing with beam
- Generic ERL accelerator physics
- Electron cooler tests ERL tests for JLEIC
- Preparations for Perle
- Preparations for LHeC
- High-Power beam dynamics testing
- Permanent magnet and FFAG test bed for future accelerators

Cornell Laboratory for

Accelerator-based Sciences and Education (CLASSE)

Synchrotron: Repetitive acceleration to high energy, low repetition rate and therefore low current.

→ Fixed target experiments, high energy, low current, relatively large beam size.

Storage rings: Rare filling at high energy and storage for millions of turns, high current, requires very low loss rates.

→ Internal target experiments, high energy, high current, relatively large beam size.

Linacs: Linear acceleration to moderately high energies that are limited by the available length. Current*Energy is limited by the available power.

→ Fixed target experiments, moderately high energies, low current, small beam size.

ERLs: Linear acceleration and deceleration to capture the energy of spent beam, like a linac but without the power limit on beam current, as spent beam provides the power. Loss rates have to be limited.

→ Dense internal targets, moderately high energies, high currents, small beam size.

ERLs provide a new niche of beam parameters: What physics can they be used for?

Cornell Laboratory for

Accelerator-based Sciences and Education (CLASSE)

ERLs: Linear acceleration and deceleration to capture the energy of spent beam, like a linac but without the power limit on beam current, as spent beam provides the power. Loss rates have to be limited.

→ Dense internal targets, moderately high energies, high currents, small beam size.

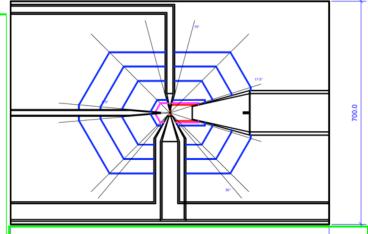
ERLs provide a new niche of beam parameters: What physics can they be used for?

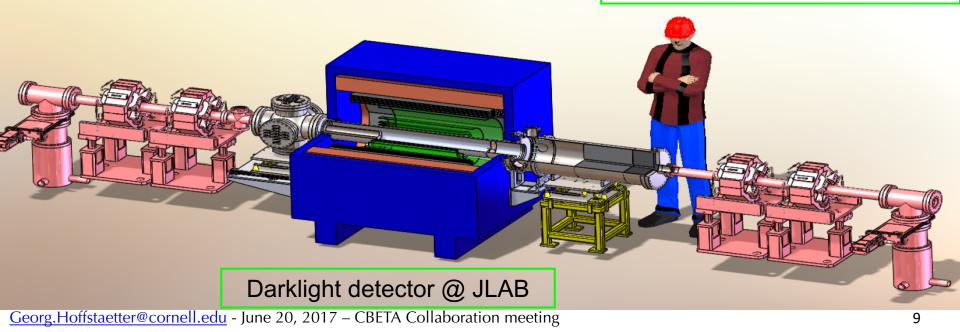
- (1) Lost beam power has to be available from power sources.
- (2) Target has length L, nuclei with charge Z.
- (3) Coulomb scattering and particle optics determine beam loss (at an aperture a with a maximal optical beta function)

ERL Target and luminosity limits:

$$\mathcal{L}_{\max} = 4.1 \times 10^{37} \,\mathrm{cm}^{-2} \,\mathrm{s}^{-1} \frac{1}{Z^2} \left(\frac{P_{\mathrm{loss}}}{\mathrm{kW}}\right) \left(\frac{\mathcal{E}}{100 \,\mathrm{MeV}}\right) \left(\frac{a}{\mathrm{cm}}\right)^2 \left(\frac{100 \,\mathrm{m}}{\beta_{\mathrm{max}}}\right) \left(\frac{10 \,\mathrm{cm}}{L}\right)$$

$$\dot{\rho} = 6.6 \times 10^{18} \,\mathrm{cm}^{-3} \frac{1}{Z^2} \left(\frac{100 \,\mathrm{mA}}{I} \right) \left(\frac{P_{\mathrm{loss}}}{\mathrm{kW}} \right) \left(\frac{\mathcal{E}}{100 \,\mathrm{MeV}} \right) \left(\frac{a}{\mathrm{cm}} \right)^2 \left(\frac{100 \,\mathrm{m}}{\beta_{\mathrm{max}}} \right) \left(\frac{10 \,\mathrm{cm}}{L} \right)^2$$


DarkLight


• DarkLight – an experiment to find dark matter particles

DarkLight @ Cornell

- Does CBETA have advantage over the JLAB-FEL?
 > by a factor of 10 for full CBETA performance (40mA vs 5mA and smaller emittances for smaller gas cells).
- Detector R&D; can the JLAB Darklight detector be used?

Gas jet collision experiment.

DarkLight

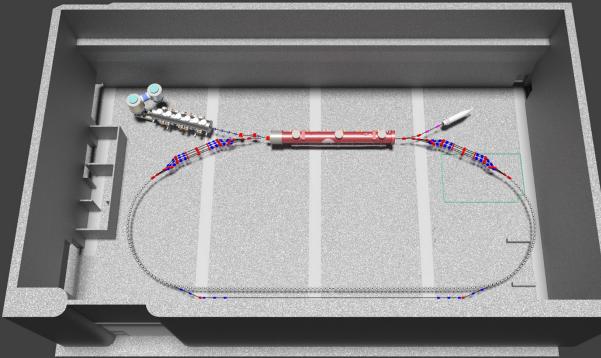
• DarkLight – an experiment to find dark matter particles

DarkLight @ JLAB test the possibility of a dark photon in the mass range 10 to 100 MeV coupling the dark sector to the Standard Model.

DarkLight precisely measures electron proton scattering using the 100 MeV electron beam of intensity 5 mA at the JLAB ERL incident on a windowless gas target of molecular hydrogen.

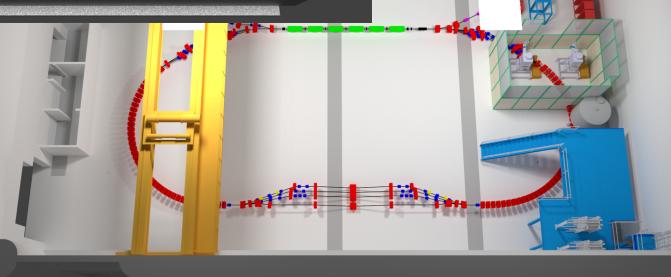
The complete initial state including scattered electron, recoil proton, and e+/epair that could come from the decay of a dark photon will be detected.

The DarkLight experiment drives development of new technology for beam, target, and detector and provides a new means to carry out electron scattering experiments at low momentum transfers. This technology would be ready to be applied at CBETA.



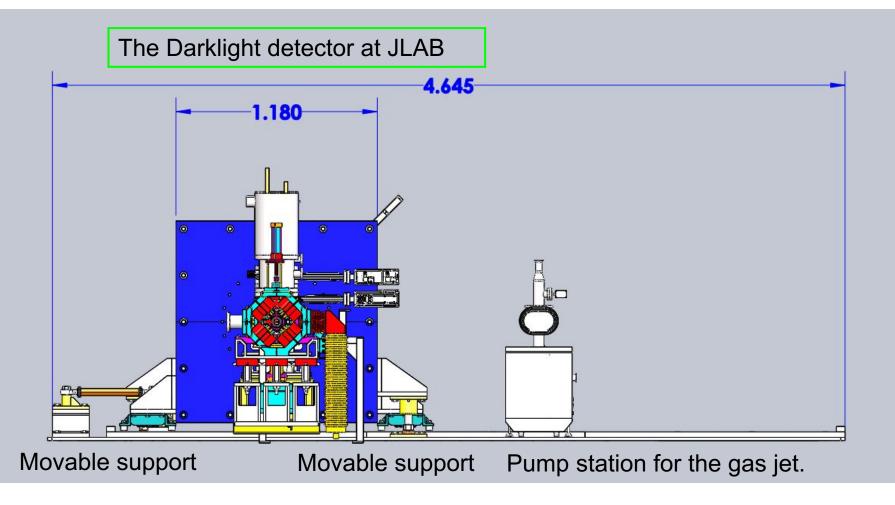
Cornell Laboratory for

Accelerator-based Sciences and Education (CLASSE)

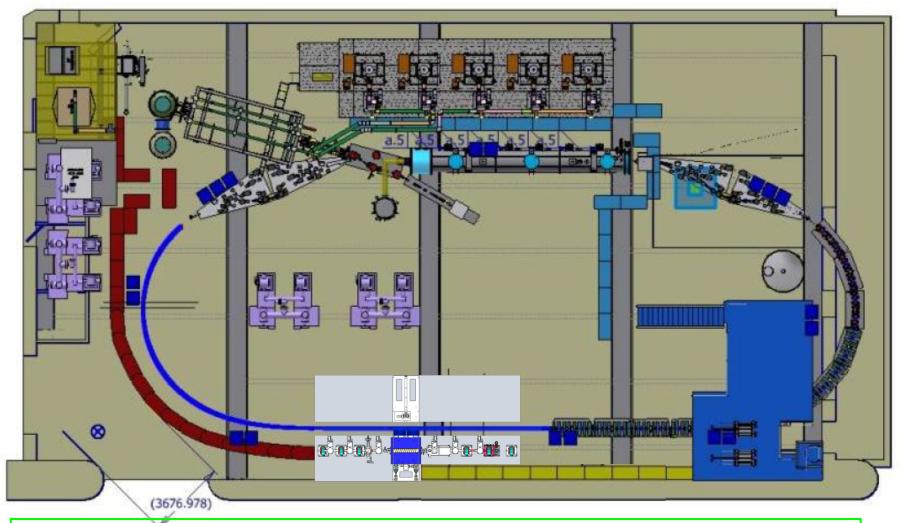

Resonantly extracted beam

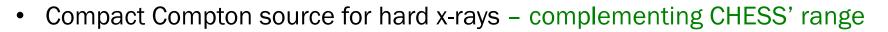
Resonant extraction: Use correctors that cancel for three energies but add for the highest energy.

Beam separation: Use septa magnets to separate each energy.

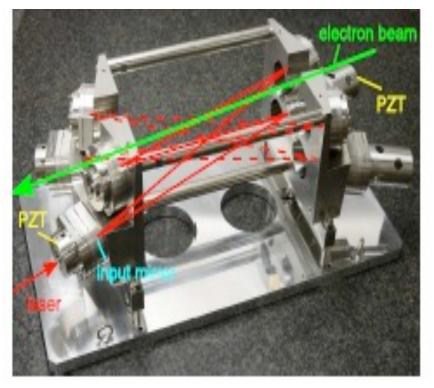


DarkLight


DarkLight – an experiment to find dark matter particles


(A) DarkLight

The Darklight detector will fit around the resonantly extracted CBETA beam, if the movable support is redesigned. Cornell is in contact with the DarkLight collaboration to submit a joint proposal.


Extrapolating from the recent demonstration of an ERLbased laser Compton source by T. Akagi et al., Phy. Rev. Accelerators and Beams **19**, 114701 (2016). Assuming the same laser source and photon pulse – electron bunch collider

Expected maximum X-ray energy: **412 keV with 0.4%** bandwidth, 0.14 mrad divergence

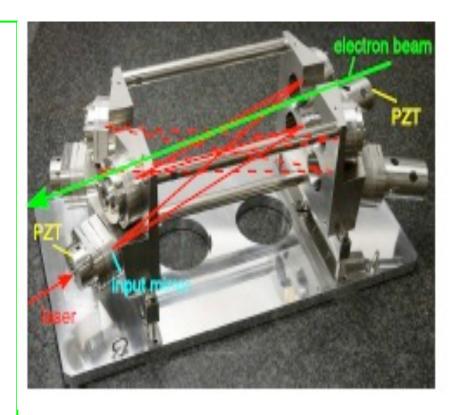
Anticipated flux on sample of 2x10¹⁰ photons/ sec

This is 13 times more than at a 3rd generation synchrotron radiation source: the current Cornell wiggler at CHESS's F2 line with the upgraded CESR storage ring (to be completed in the next few years)

From a collaboration with Carl Franck (Cornell)

CBET

The electron/photon collisions would occur within an optical cavity that intensifies the optical bunch intensity. The base design is due to Akagi et al. (2016)



Compact Compton source for hard x-rays – complementing CHESS' range

A proposal is envisioned for

- Develop laser storage cell
- Establish collisions in CBETA
- Develop an x-ray beamline

For after commissioning of CBETA with current funding by summer 2020 and possible stage II accelerator R&D.

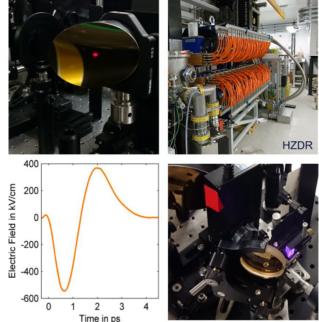
CBET

THz Laser

• THz laser – complementing CHESS' range

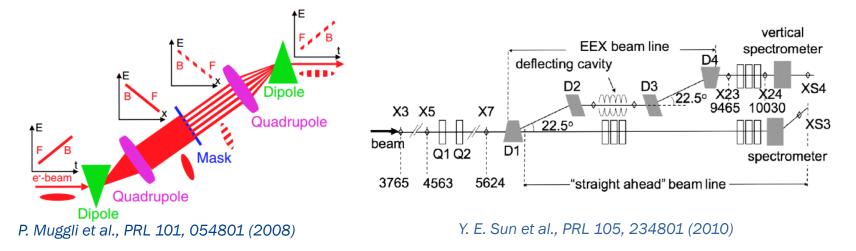
European XFEL Workshop

Terahertz science at European XFEL

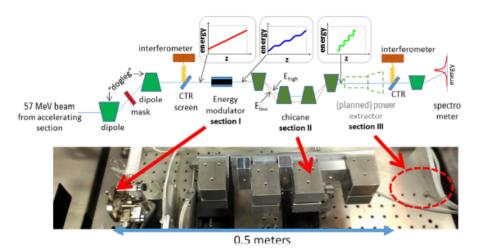


CBET

01-02 June 2017 / European XFEL, Schenefeld, Germany

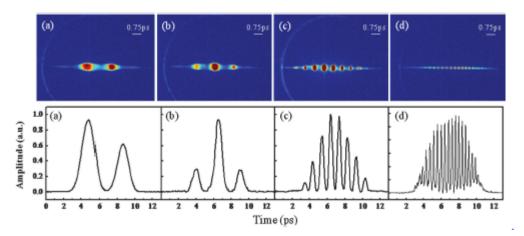

The interaction of terahertz radiation with matter excites novel states with unique properties. These non-equilibrium states will benefit from ultrafast characterization using the ultrashort and highly brilliant X-ray pulses available at FELs. With this in mind, we are pleased to announce a terahertz workshop, with the aim to find the most scientifically promising strategies to combine terahertz radiation with the unique X-ray pulses generated at European XFEL.

The 2 day workshop will be led by 18 presentations from invited international scientists. The first day will explore the **scientific motivation for THz - X-ray experiments**. The second day will focus on the **two main routes to THz generation in the frequency range from 0.1 to 20 THz** (3 mm to 15 µm): On the one hand, state of the art laser-based sources; and on the other, undulator sources based on a second, smaller accelerator. Specific aspects will be compatibility with the MHz repetition rate of the European XFEL and novel opportunities for coherent control in the multi-THz regime. We intend to discuss how individual research projects can benefit from a combination of these sources.

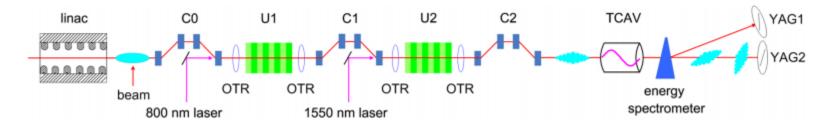


• Exchange transverse modulation to longitudinal distribution

Exchange wake-induced energy modulation to density bunching



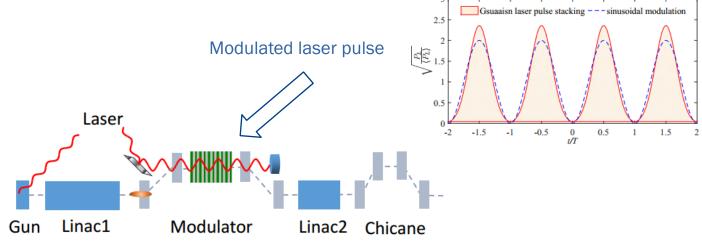
K. Bane and G. Stupakov, NIM-A 677, 67 (2012)
S. Antipov et al., PRL 108, 144801 (2012)
S. Antipov et al., PRL 111, 134802 (2013)
G. Stupakov, PRST-AB 18, 030709 (2015)
K. Bane et al., NIMA 844, 121 (2017)



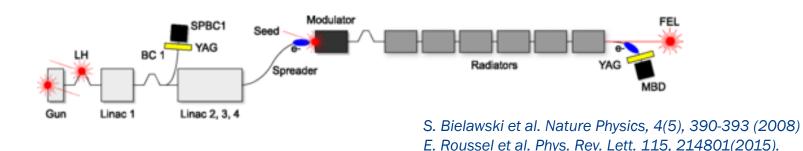
Direct modulate the drive laser of the gun

Y. Li et al., APL 92, 014101 (2008) P. Musumeci et al., PRL 106, 184801 (2011) Y. Shen et al., PRL 107, 204801 (2011) P. Musumeci et al., PRST-AB 16, 100701 (2013) Z. Zhang et al., PRL 116, 184801 (2016)

Frequency beating of laser-induced density bunching



D. Xiang et al., PRST-AB 12, 080701 (2009)


M. Dunning et al., PRL 109, 074801 (2009)

Cornell Laboratory for Accelerator-based Sciences and Education (CLASSE) (Z. Zhang et al., Phys. Rev. AB 20, 050701, 2017)

 We propose a method based on the slice energy spread modulation to generate density bunching in a relativistic electron beam (a la laser heater setup)

• Similar method has been used in storage ring and FERMI FEL (for two-color FEL).

Cornell Laboratory for

Accelerator-based Sciences and Education (CLASSE)

Simulation parameters fit very well to CBETA

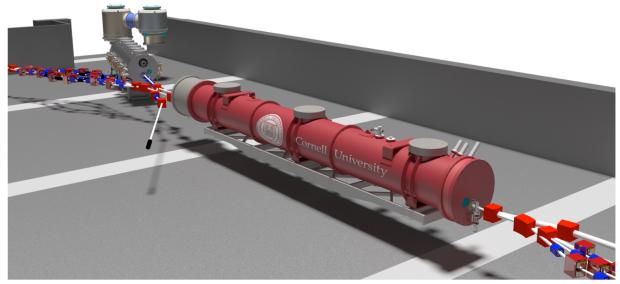
Parameter	Value	Units		
Electron beam				
Charge	500	\mathbf{pC}		
Beam energy	135	MeV		
Current Profile	flat-top	/		
Bunch length	~ 10	\mathbf{ps}		
Intrinsic slice energy spread	10^{-4}	/		
Norm. emittance	1	mm-mrad		
rms beam size	200	$\mu { m m}$		
Modulator				
Laser wavelength	800	nm		
Undulator period	5	\mathbf{cm}		
Period number	10	/		
Laser waist size	1.5	$\mathbf{m}\mathbf{m}$		
Laser stacking separation	$0.5 (0.25^*)$	\mathbf{ps}		
rms laser pulse length	60(30)	\mathbf{fs}		
Laser power	1(0.26)	\mathbf{GW}		

* The numbers in brackets are the parameters for 4 THz case.

A stand alone THz source has been designed for the LCLS-II are

- Stand-alone THz source at the experimental area (XFEL, LCLS-II)
- Use LCLS-II spare gun + accel. cryomodule (50 MeV) for a high-rep. rate compact accelerator
- E-beam power is similar to LCLS-I (5-10 kW) and requires LCLS-I type of shielding
- Leverage OPCPA laser at LCLS-II R&D (800 nm, 0.1 -1 MHz, 100 W)
- Expect good synchronization with hutch lasers (both through OPCPA)
- Strong THz field may be used in the LCLS(-II) TimeTool to cross-correlate with optical signals (and X-rays) for jitter corrections
- THz pulse form can be controlled by both laser and e-beam techniques (narrowband, chirped, a few cycle pulses, all possible)
- Flexible, powerful, high-rep. rate THz, well-synchronized with X-rays.

Similar parameters could be achieved at CBETA. This application is under discussion, no planning has been started.

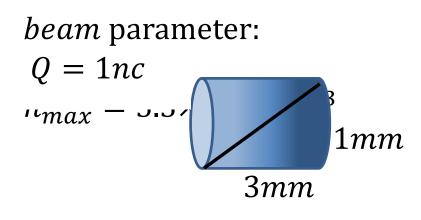


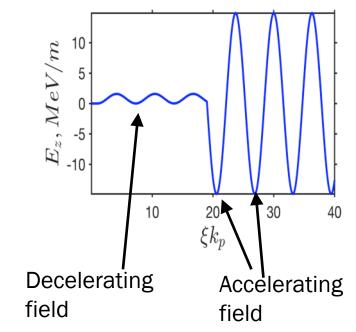
Cornell Laboratory for

Accelerator-based Sciences and Education (CLASSE)


• Beam for time-resolved electron diffraction from 1-6MeV

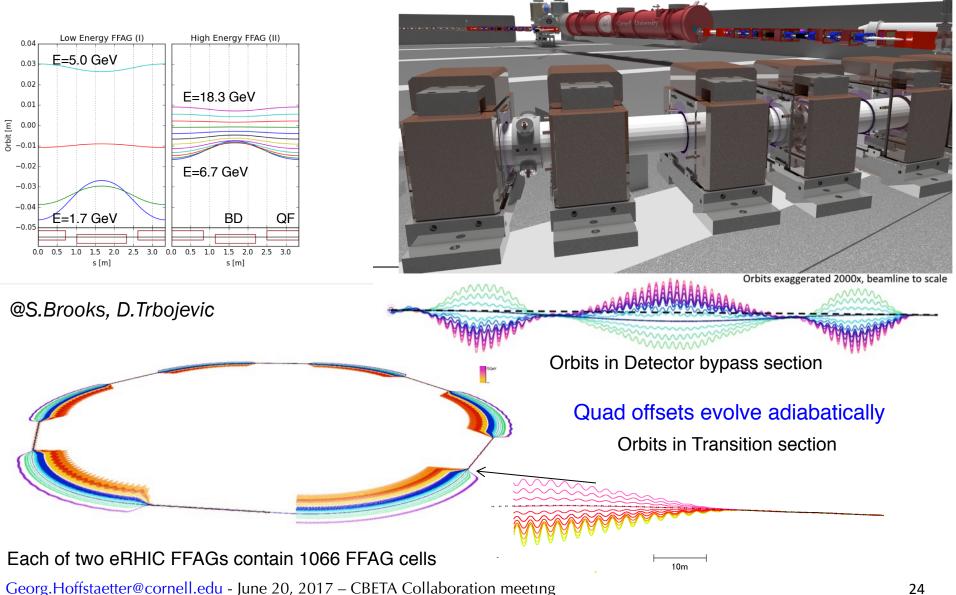
CBETA has a 6MeV line that is mirror symmetric to the line that leads into the Main Linac Cryomodule (MLC). It is for injector optimization, because optimization in the MLC lacks detectors.


The full beam brightness can be optimized in this region between 1 and 6 MeV and can be used for various beam applications.

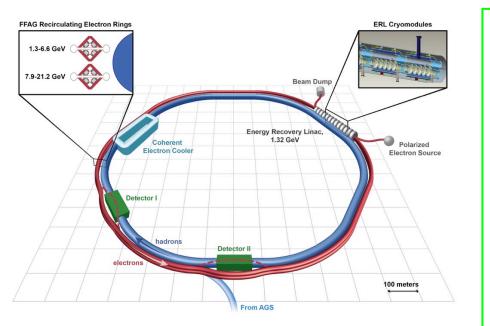

Together with David Muller (Cornell) an application for fast electron diffraction is being prepared.

Plasma Wakefield Acceleration (RF)

- Beam for Plasma Wakefield Acceleration
- with High Transformer Ratio


- Key challenge for PWFA: low transformer ratio
- A Gaussian driver bunch is experiencing a decelerating field that is ¹/₂ of the peak accelerating field experienced by the witness bunch
- Shaped bunches ightarrow large transformer ratio ightarrow never demonstrated before
- CBETA could generate triangular shaped driver bunches and time-delayed witness bunches (Collaboration with Gennady Shvets)

Continued eRHIC prototyping


eRHIC accelerator testing – more detailed eRHIC R&D

- eRHIC cavity testing with beam
- ASML medical isotope cavity testing with beam

eRHIC's first test cavity has 650MHz and can be tested in CBETA setup with beam:

- Remove MLC, adjust cryo and RF systems
- Insert eRHIC test-cryomodule with 2 5-cell cavities

The company ASML has a grant for electron-beam production of medical isotopes with an CW SRF linac. Interest in beam test of the linac (650MHz or 1.3GHz) in CBETA has been discussed.

- Generic ERL accelerator physics
- Electron cooler tests ERL tests for JLEIC
- Preparations for Perle @ ORSAY
- Preparations for LHeC
- High-Power beam dynamics testing
- Permanent magnets for future accelerators
- FFAG test bed for future accelerators

Georg.Hoffstaetter@cornell.edu - June 20, 2017 – CBETA Collaboration meeting

CBETA's prototype girder with 4 FFAG cells of permanent Halbach magnets.

JBF

Questions?