

New Life for the FEL

Chris Tennant

Jefferson Laboratory

7th International ERL Workshop | June 18-23, 2017

Global ERL Landscape

The DarkLight Experiment

- search for a dark matter particle by studying e⁻ p scattering in an internal target
- choice of machine configuration is driven by the requirement to:
 - 1. minimize background radiation
 - \checkmark reduce cavity gradients to run 100 MeV (from 130 MeV) \rightarrow avoid onset of field emission
 - 2. minimize beam losses
 - ✓ reduce bunch charge from 135 pC to 60 pC \rightarrow reduce transverse and longitudinal emittance, reduce halo
 - ✓ low momentum spread bunch → reduce impact of dispersion errors, mitigate resistive wall heating by keeping bunch long (3.3 ps rms vs 0.12 ps rms)

DarkLight: Aperture Test (2012)

goals:

✓ maximize target gas density

/ minimize tube diameter

✓ minimize beam background

- how small can you go?

 install a test aperture in the beamline, configure the machine for DarkLight experimental conditions and quantify beam loss

✓ target chamber: (6,4,2) mm × 127 mm

Optics Configuration

 install test aperture(s) in well-characterized region with a lot of diagnostics

✓ phase-space exchange unavailable

Longitudinal Match

- ERL performance sensitive to longitudinal dynamics
 - ✓ FEL: short, moderate momentum spread bunch at wiggler
 - DarkLight: long, low momentum spread bunch at target
- cross-phasing of linac modules provides a single phase setpoint to go from short bunch to small momentum spread operation
- maintain phasing and setup procedures from FEL configuration

RMS energy spread: 0.5%

RMS energy spread < 0.01%

Halo Management

- **halo** \equiv large emittance, low intensity component(s) of beam
 - ✓ mismatched to core
 - ✓ sample large amplitudes
 - ✓ can be tightly focused (but with large divergence)
 - \checkmark "stuff" that's too dim to see with standard diagnostics
- map out large amplitude response of lattice ("halo map")

- use mismatch to adjust halo envelopes at aperture constraints
 - ✓ find quad where halo large, core beam small
 - ✓ adjust "halo" knob, reduce halo size at aperture
 - ✓ use BLMs as diagnostic

Multipass Beam Breakup (2005)

BBU first observed in IR FEL Driver in 2005

✓ full suite of measurements used to characterize the instability

✓ suppression techniques employed successfully

- simulate BBU with several codes
- experimentally measure threshold current using variety of techniques

	Method	l _{threshold} (mA)
Simulation	MATBBU (Yunn, Beard)	2.1
	TDBBU (Krafft, Beard)	2.1
	GBBU (Pozdeyev)	2.1
	BI (Bazarov)	2.1
Experimental	Direct Observation	2.3 <u>+</u> 0.2
	Growth Rates	2.3 <u>+</u> 0.2
	Kicker-based BTF	2.3 <u>+</u> 0.1
	Cavity-based BTF	2.4 <u>+</u> 0.1
Analytic	Analytic Formula	2.1

Phase Space Exchange

5 skew quadrupoles are installed in the backleg to exchange the horizontal and vertical phase spaces

Multipass Beam Breakup (2012)

- NO phase space exchange + high current = BBU
- energy fluctuations + chromaticity → modifies phase advance → changes recirculation matrix → BBU
- control onset by adjusting the energy of a vernier cavity (10s to 100s of keV)

✓ "cat's eye" image on SLM indicates imminent BBU-induced trip

Results

- multiple runs of varying length
- final run delivered 0.43 MW of beam (4.3 mA at 100 MeV/c) for nearly 7 hours through the 2 mm aperture with average beam loss of 2.8 ppm

development of large dynamic range viewer

Transition (2014)

EImage: Constraint of the sector of the sector

- FEL group absorbed into the Accelerator Division
- operations group assumes responsibility for "driving" LERF
 - presents unique challenges for a machine used as a testbed
 - ✓ not a user-facility
 - ✓ proceduralizing 15 years of institutional knowledge is difficult

L ERF O perations D irectives

LRF-AD-01-001 Revision 1 October 8, 201

Commissioning the LERF (2015)

from machine off for 2 years to CW operation in 70 hours

Observing BBU, Again

mechanism: F100 installed in Zone 2 \rightarrow dangerous HOMs at locations of <u>lower</u> beam energy \rightarrow lower threshold current

DarkLight Interaction Region Design

- interaction region consists of:
 - ✓ gaseous hydrogen target
 - ✓ detector
 - ✓ 5 kG solenoid (1.1 m)
 - ✓ Moller dump (0.5 m)
- installed in place of IR wiggler
- effect on the beam
 - ✓ transversely couple the beam
 - \checkmark increase transverse spot sizes
 - ✓ increase energy spread

DarkLight Interaction Region Design

- requirements of design
 - ✓ match (transverse and longitudinally) to the target
 - ✓ linac-to-linac transport must exchange transverse phase spaces
 - \checkmark transport degraded, coupled beam to dump
- significant re-work of backleg region between chicane and arc

Interaction Region: Orbit Response

fall 2015 configuration: no skew quadrupoles, no solenoid

Interaction Region: Orbit Response

fall 2016 configuration: skew quadrupoles and solenoid ON

DarkLight: Engineering Run (2016)

- Goal: run power with skew quadrupoles and solenoid ON
- ran 24 hours/day for 8 days
- solenoid installed, but not target
- solenoid vertical steering
- element database growing pains
 ✓ QTs set wrong → could not resolve remnant dispersion
- diagnostic headaches
 - ✓ BPM + viewer + Happek

could not find a matching solution with skew quadrupoles and solenoid on

ran 6% duty factor at 1.25 mA with minimal losses

DarkLight: Target Run (2016)

- Goal: run power with internal gas target
- little over 2 weeks between runs
- matched beam to solenoid
- target baffles misaligned \rightarrow poor transmission
- machine ran well (RF, gun, drive laser, most diagnostics)
- gas target ran stably at 300 mTorr
 ✓ no obvious effect on the beam
- MIT took data with and without gas at various magnet strengths

Beam Characterization

results of quadrupole scans at various locations in the machine

Beam Characterization

propagating measured Twiss parameters through DarkLight target

Beam Characterization

propagating measured Twiss parameters through DarkLight target

Summary

lessons learned

✓ aggressive schedule (operations and installation)

- shortened from initial plan \rightarrow no contingency
- ✓ operations learning curve
- ✓ software issues (magnet settings)
- ✓ hardware issues (diagnostics, solenoid, target baffles)

but, could run beam to target with thickness 10¹⁸ cm⁻²

 \checkmark 3 orders of magnitude larger thickness than previously demonstrated

"The energy recovery technique might also be useful in experiments other than clashing beam type. For instance a low-density target such as liquid hydrogen might be placed in the return leg of the magnet system." *M. Tigner, Nuovo Cimento (1965)*

Looking Forward

DarkLight
 ✓ not clear...

U.S. Cosmic Visions: New Ideas in Dark Matter

23-25 March 2017 Stamp Student Union, University of Maryland, College Park

"Input is requested on the possibilities for small (the whole project is \$10M or less) dark matter projects in unexplored parameter space."

Report of the

Community Review of EIC Accelerator

R&D for the Office of Nuclear Physics

JLEIC

- ✓ design of single pass ERL cooler
- ✓ design of multi-turn CCR cooler
- ✓ demonstration of CCR using LERF infrastructure

Other

- ✓ medical isotope production
- \checkmark low energy target irradiation
- ✓ intense positron source

February 13, 2017

2017

ACKNOWLEDGEMENTS

DarkLight Collaboration Operations Staff

And in particular:

Steve Benson David Douglas Pavel Evtushenko Bob Legg Yves Roblin Todd Satogata Mike Spata Mike Tiefenback

Global ERL Landscape

Global ERL Landscape

BBU Suppression Techniques

- Modify betatron phase advance → point-topoint focusing
- Change four vertically focusing quadrupoles in recirculator to vary the vertical phase advance

Detecting A Resonance Kinematically with eLectrons Incident on a Gaseous Hydrogen Target

"She may not look like much, but she's got it where it counts, kid."

"She may not look like much, but she's got it where it counts, kid."

Generating a Magnetized Beam

measuring beam angular momentum (beam magnetization) using slit and viewer screen method with 1450 G at photocathode

