

Canada's national laboratory for particle and nuclear physics and accelerator-based science

ERL Upgrade Plans for the ARIEL e-Linac Bob Laxdal, TRIUMF

June 22, 2017

Contribution THICCC004

- 500MeV cyclotron since 1974
 - ~300µA distributed to multiple beamlines
- ISAC since 1995
 - Radioactive ion beam (RIB) facility
 - Driven by 500MeV protons from cyclotron
- ARIEL in progress (2010-2023)
 - e-Linac being commissioned demonstrator beam in 2014
 - Will drive RIB production in new ARIEL target area (e-line in progress)
 - BL4N proton line
 - Will drive second ARIEL RIB production target

Advanced Rare IsotopE Laboratory - staging

- ARIEL will triple the lab's RIB production by adding two new target stations resulting in up to three simultaneous ion beams
- ARIEL is staged
 - ARIEL-I
 - E-Linac demonstration at 23MeV (2 cavities) 2014
 - ARIEL1.5
 - Complete e-Linac to 30-35MeV third rf cavity added – 2017
 - Complete e-beamline 2018
 - ARIEL-II
 - Install electron target station (AETE) and RIB lines
 2019
 - Install BL4N proton beamline, proton target station (APTW) and RIB lines - 2022

ARIEL 50MeV e-Linac

RTRIUMF

1.3GHz SRF Electron Linac (10mA)

- Base-line design five nine-cell cavities housed in three cryomodules – each cavity adds 10MeV (100kW)
- 23 MeV demonstrated from two cavities in 2014
- Install 30MeV capability in mid 2017 in commissioning ramp to 100kW in 2018
- 50MeV (10mA) capability foreseen pending funding (500kW)
- Bunch structure 650MHz macro-pulse established with e-gun rf – rep-rate is selectable from 0.1% to 100%

The ARIEL e-Linac as a recirculator

The linac is configured to allow a recirculating linac (RLA) for a multi-pass `energy doubler' mode or to operate as an energy recovery linac (ERL) for accelerator studies and applications

Accelerator Vault – existing configuration

e-Linac Design and Status

- Thermionic 300kV DC gun cathode has a grid with DC supressing voltage and rf modulation that produces electron bunches at 650MHz
- Gun installed inside an SF6 vessel
- Rf delivered to the grid via a ceramic waveguide

Parameter	Value
RF frequency	650MHz
Pulse length	±16 ⁰ (137ps)
Average current	10mA
Charge/bunch	15.4pC
Kinetic energy	300keV
Normalized emittance	5µm
Duty factor	0.01 to 100%

June 22, 2017

- 1.3GHz nine-cell elliptical cavities
- End groups modified to accommodate two 50kW couplers and to reduce trapped modes

* P. Kolb, 'The TRIUMF nine-cell SRF cavity for ARIEL', PhD thesis, University of British Columbia, DOI: 10.14288/1.0300057, April 2016.

Parameter	Value
Active length (m)	1.038
RF frequency	1.3e9
R/Q (Ohms)	1000
Q ₀	1e10
E _a (MV/m)	10
P _{cav} (W)	10
P _{beam} (kW)	100
Q _{ext}	1e6
$Q_{L}*R_{d}/Q$ of HOM	<1e6

HOM Damping

- To allow for a future ERL upgrade, BBU criteria set limits on the HOM dipole shunt impedance (Rd/Q*Q_L)
- Assuming a threshold current of 20 mA, beam dynamics calculations set a limit on dipole mode shunt impedance values of Rd/Q*Q_L < 10⁷ Ω
- Estimation of fabrication errors combine to set a lower limit of Rd/Q*Q_L < 10⁶ Ω
- CESIC and SS passive coaxial dampers used to suppress HOMs to <BBU limit up to 4GHz

ARIEL Cryomodules

Houses

One/two nine-cell 1.3GHz cavityTwo/four 50kW power couplersHOM coaxial dampers

Features

- •4K/2K heat exchanger with JT valve on board – allows standard 4K cold box
 •scissor tuner with warm motor
 •LN2 thermal shield – 4K thermal intercepts via syphon
 •Two layers of mu-metal
- •WPM alignment system

Cryomodule Cold test results

Parameter	ICM	ACM
4K static load	6.5	8.5
2K static load	5.5	11
77K static load	<130	<130
2K efficiency	86%	86%

- ✓ Cavities meet specification
- Cryogenic engineering matches design expectations
- ✓ 2K production efficiency 86%
- ✓ Syphon loop performance characterized

E-Linac RF Drive System

- There are two 300kW CPI klystrons
 one for each cryomodule
- ACM1 two cavities (two tuners) driven by one rf source in Vector Sum – stable operation demonstrated
- Each cavity turned on and tuned separately with SEL then combined in a single loop
- Working on Adaptive Feed Forward for compensation of beam loading in pulsed mode

e-Linac with re-circulation

The ARIEL e-Linac as a recirculator

Beyond 2020 – proposing a ring to operate as a recirculating linac (RLA) (energy doubler) or as an energy recovery linac (ERL) for accelerator studies and applications

RLA applications:

• Increase energy for RIB production

ERL Applications:

- Infra-red and Ultra-violet Free Electron Lasers
- Intense THz radiation source (FEL and/or Coherent Synchrotron Radiation (CSR))
- Compton backscattering source of X-rays

Single user mode only

Doubles beam loading so limits maximum beam intensity

ERL

- Dual-use possible with two interleaved bunch trains into 1.3GHz buckets
- 650MHz pulse train single pass acceleration for RIB production – low brightness
- 650MHz/n pulse train for ERL high brightness
- 650MHz rf separator used to separate the beams

Overview of Dual Use ERL/Linac

Initial ERL Layout (Chao, Gong)

RF Separation of Interleaved Beams

- Damping of Higher Order Modes is important due to high current CW beam
- Two types of HOM dampers used:
 - HOM Coupler: antenna with 650 MHz filter
 - HOM Damper: resistive coaxial beam pipe insert, cooled by LN2
- Modes damped to below goal imposed by multi-pass Beam Break-Up

- Due to low performance specs, fabrication methods include some alternative techniques:
 - Machining from bulk *reactor grade* Niobium
 - RRR of 45 compared to usual ~300
 - Tungsten Inert Gas (TIG) welding
 - Developed as an alternative to electron beam welding

Courtesy Douglas W. Storey

10MeV injected

30-50 MeV circulating

ACM1 wire injector ring Merger ICM

Merger and Separator Optics

a) RF separator cavity, b) dipole magnet, c) quadrupole, and d) septum

- THz radiation (0.3 to 20 THz), at the interface of electronics and photonics, is a frontier area for research in the physical sciences, biology, medicine.
- Accelerator-based THz sources with high peak and average power enable new applications.
- Two possibilities for linac-based THz sources:
 - Free Electron Lasers (FELs) => narrow-band THz
 - Coherent Synchrotron Radiation sources => broad-band THz
- Require a high brightness photo-injector for the e-Linac

IR FEL Parameters

Electron Beam Parameters		
Energy	MeV	30-50
RF frequency	GHz	1.3
Average current	mA	10
Charge per bunch	рС	77
Bunch rep freq.	MHz	130
Bunch length (rms)	ps	1
Energy spread (rms)	%	0.1
Output Light Parameters		
Wavelength range	μm	1-20
Micropulse energy	μJ	30
Laser power	kW	3-5

E-Linac as an X-ray Source via Compton Backscattering

Electron beam parameters

Energy 50 MeV Beam current 13 mA Bunch charge 100 pC Norm. emittance (rms) 1 mm-mrad Beam size 30 μm

Laser 1.8 µJ, 1064 nm, 3 ps Spot size 60 µm Rep. rate 130 MHz Cavity gain 3000

X-ray beam energy: E ~ 40 keV X-ray flux: $N_x \sim 2.7 \times 10^{13}$ photons per second

- ERL applications require a high brightness photo-gun – RIB production favours a low brightness beam
 - Will be difficult to find space for two guns
 - Can we produce low emittance and high emittance beams from the same gun
- Need to engage a user community to prioritize applications
- Need to optimize final parameter set then detail budget and effort required

Required

- E-Linac first operation
 - Commission linac at 30-35MeV (summer of 2017)
 - Ramp power to 100kW 2018
 - First beam on ARIEL target 2019
- TRIUMF is now in the planning phase for the next five year funding cycle starting in 2020
- Projects being discussed include a second accelerating module to complete the linac to the original specification and the addition of a circulation ring to enable ERL R&D and applications

Canada's national laboratory for particle and nuclear physics and accelerator-based science

TRIUMF: Alberta | British Columbia | Calgary | Carleton | Guelph | Manitoba | McGill | McMaster | Montréal | Northern British Columbia | Queen's | Regina | Saint Mary's | Simon Fraser | Toronto | Victoria | Western | Winnipeg | York

Thank you! Merci!

Follow us at TRIUMFLab

RIUMF

Electron vs proton driver

The electron linac driver complements the existing proton cyclotron driver

 Photofission yields high production of many neutron rich species with less isobaric contamination than spallation

 An energy of 50MeV is sufficient to saturate photo-fission production

