# Development of a multialkali photocathode DC gun for high current operation

Tohoku Univ.N. NishimoriQSTR. Nagai, M. Sawamura, R. Hajima



# Outline

- Development of a photoemission DC gun at QST
- Fabrication of  $Cs_3Sb$  photocathode with QE of 5%
- mA beam generation from the gun
- Summary



# Application of high current DC gun

## 800MeV ERL-FEL

• 10kW EUV light sources



Injector specifications after merger

| Charge | ε <sub>n</sub> (μ <b>m)</b> | I <sub>peak</sub> (A) | I <sub>ave.</sub> (mA) |
|--------|-----------------------------|-----------------------|------------------------|
| 60 pC  | 0.60                        | 30                    | 10                     |

## Smith-Purcell FEL

Compact THz light source

## CEA-CESTA, France

#### J. Gardelle et al., PRSTAB12, 110701 (2012)

| Parameters                    | Value                    |  |
|-------------------------------|--------------------------|--|
| Applied voltage               | $(85 \pm 5) \text{ kV}$  |  |
| Current                       | $(180 \pm 30) \text{ A}$ |  |
| Current pulse duration (FWHM) | 300 ns                   |  |
| Beam thickness                | 2 mm                     |  |
| Beam-grating distance         | 2 mm                     |  |
| Beam width                    | 10 cm                    |  |
| Grating period                | 2 cm                     |  |
| Grating groove depth          | 1 cm                     |  |
| Grating groove width          | 1 cm                     |  |
| Grating width                 | 10 cm                    |  |
| Number of periods             | 20                       |  |
| External magnetic field       | Variable from 0 to 1 T   |  |



# Development of a photoemission DC gun at QST



# 1. Development of an alkali photocathode preparation chamber (2013~)

N. Nishimori ERL17 CERN

Follow Cornell's system,

L. Cultera, "Fabrication, characterization and use of alkali antimonides in a dc gun", P3 Workshop 2012.



## Fabrication of Cs<sub>3</sub>Sb photocathode

Mo puck (cERL compatible) Si(100) substrate





# 2. Development of a photoemission DC gun

Gun development started in 2006.

R. Nagai et al., Proc. Of PAC09, 545 (2009) R. Nagai et al., RSI 83, 123303 (2012)

SF6 insulator gas tank



 ✓ 180kV-1µA beam generation with GaAs photocathode

### 250kV-50 mA HV power supply



#### GaAs preparation system



## HV test with cathode electrode in place



N. Nishimori ERL17 CERN

# 3. Beamline







# μA beam generation



#### 11

## mA beam generation





# Vacuum incident during beam transport



# Summary

✓ Fabricated Cs<sub>3</sub>Sb photocathode with QE of 5 %.
✓ Generated 150kV - 4.3 mA beam from the photocathode.

Future work

Fix the vacuum issue and perform baking, HV conditioning, photocathode fabrication to restart the gun development.

Acknowledgement This work is partially supported by JSPS Grants-in-Aid for Scientific Research in Japan (15K13412).