

Lessons learned from BNL R&D ERL test facility

Dmitry Kayran Brookhaven National Laboratory

18-23 June 2017, CERN

R&D ERL: Installation and commissioning time line

Strategy: Start commission of key components when systems installed and recourses are available.

(no beam)

- High power RF components installed and commissioned (2005-2007
 - 1MW Klystron, 50kW RF PA, waveguides, controls, circulator, dummy load
- ✓ SRF 5-cell installed and cold emission test completed (2009)
 ✓ Eacc=18MV, 2 sec CW every 10 sec.
- ✓ 9.4MHz Laser system commissioned (2009)
- ✓ Digital LLRF system commissioned (2012)
- ✓ 2 K LHe cryogenic system/refrigerator commissioned (2012)
- ✓ SRF half-cell gun cold emission test w/o cathode (2013)
 ✓ Eacc=2MV
- ✓ Conditioning of the SRF gun with a cathode stalk (Jan 2014)
 ✓ Eacc=1.25MV
- ✓ Gun test beam line components installation completed
- ✓ Low power gun beam test approved (May 2014)
- ✓ Dark current measurement June 2014
- ✓ First photoelectrons Nov 2014

14:10 16:20

16:30

14:00

First beam commissioning (June-Nov. 2014)

D. Kayran

First attempt to run SRF gun with cathode (June 2014)

Dark current measured before (red) and after (green) conditioning June 2014. Drops ~25 times after conditioning.

Energy measurements. Corrector top 0.5 A, bottom 1 A. 7mm shift due to 0.5 A corrector change corresponds to beam energy of 1.2 MeV.

D. Kayran

First beam, old cathode Nov 2014.

Photocathode cold QE=2.7e-5 Very bw!!!

ERL'17 June 18-25, 2017

UlTimer event

D. Kayran

First beam test results meas. vs simulation

*Wencan Xu et al., "Multipacting-free quarter-wavelength choke joint design for BNL SRF gun", In Proc. of IPAC'2015, pp 1935-1937 (2015).

ERL'17 June 18-25, 2017

Beam commissioning with new cathode June 2015.

Solenoid scan to measure gun astigmatism (preliminary)

Such asymmetry could be generated by quadruple with focus length 64cm!!!. Located at FPC or solenoid imperfection.

Energy measurements using correctors and profile monitor

Beam shift at straight line profile monitor 15.5 mm corrector changes dI=1.4A Corresponds to beam energy KE=1MeV RF voltage setting 1.02 $\ensuremath{\mathsf{MV}}$

Try Solenoid scan, Q=130pC

Beam image at profile monitor for different solenoid settings

Laser transveres profile

Power on cathode 3.49 W at 9.38 MHz, or 372nJouls per laser pulse, FWHM=1.7mm

$$x_{rms}^2 = \langle x^2 \rangle = A\left(\frac{1}{f^2}\right) - 2AB\left(\frac{1}{f}\right) + (C + AB^2)$$
$$\varepsilon = \frac{\sqrt{AC}}{d^2}$$

Vertical normalized emittance 3.5 um Horizontal normalized emittance 2.6 um

10 Watts e-Beam for fault studies.

FC Flange temperature (blue) rises 3 ºC per 30 minutes.

One single: RF pulse duration 5msec (magenta), laser pulses 4msec (green) and faraday cup signal 4 msec (yellow) 10 kOhm termination.

260 uA in 4 msec pulse at FC has been measured. With duty cycle 4% corresponds to 10.4 uA average current at beam dump. Beam with average power in order to 10 Watts has been provided for radiation survey to FC.

After these studies and completion of ARR DOE approval for full power gun-to-dump test commissioning has been received in July 2015.

Average current and charge from Gun

Average current and charge from the gun during fault studies measured by ICT and pulse counter.

Gun to Dump test: first propagation

Typical cathode QE redaction during beam tests

Cathode QE measurements in the SRF gun during beam tests

17

Parameter	Measured*
Kinetic Energy	1.2 MeV
Charge per bunch	0.55 nC
Cathode QE in the gun	1%
Current during RF pulse	350 uA
Average current (in second)	20 uA
Laser Rep. Rate	9.38 MHz
Average Laser power at the cathode	3.5 W
Laser Bunch Length	8.5, 22 psec
Norm. emittance x/y	2.5/3.5 um
Average dump power	10W @ FC

*Listed parameters have been achieved in different modes of operation

BPMs signal drifts and jumps

During commission significant jumps of trajectory.

It's very difficult to tune machine. We suspect that ICT, DCCTs ceramic breaks are slow charged by halo or/and dark current and then sudden discharge.

The shielding for each ceramic break location has been implemented and installed din LEReC Injection line. No such problems observed anymore during LEReC DC gun commissioning

ERL components moved to LEReC location (RHIC IR2)

LEReC will use SRF gun as a booster cavity without cathode inserted.

- The booster needs to operate CW at 2.2 MV of voltage. In 2013 this cavity has been commissioning for such operation. However after beam tests it was discovered that the cavity can run only at 1.6 MV of voltage.
- This gun as a booster cavity needs to be install for LEReC commissioning in summer of 2017.
- Cavity with cryostate has been removed from ERL beam line in De 2015.
- In summer of 2016 cavity has been sent for cleaning, modification (Argon) and testing (JLAB).
- Cavity now is reinstalled in ERL block house for HP conditioning before moving to LEReC this fall.
- RE-Commisioning with beam starts Spring 2018.

When cavity has been opened and copper marks have been observed at niobium part of chock join. Presumably cavity has been contaminated during severe cathode stalk RF conditioning.

HTS solenoid lead damaged.

After opening gun cryostat we also discovered that main coil lead of HTS solenoid has been damaged.

It explains why we were not able to use this solenoid during beam studies.

From one side both HTS leads can be seen to be a uniform red color.

Main lead from other side it's different matter. Besides being discolored in spots, it's lifted up at one point.

Summary and plans

- The first SRF gun test with "multipacting-free" Ta tip cathode took place in June, 2015.
- The highest charge from SRF gun .55 nC has been achieved (initial QE=1%.)
- The max average current during these tests 22 uA has been demonstrated (with 260 uA in 4 msec pulses 10 Hz rep. rate)
- Beam has been delivered to beam dump with SRF linac off.
- 90% injection to extraction current transparency routinely has been achieved.
- Cathode with QE 4e-4 level allowed us to commissioning ERL systems with bunch charge 30-50 pC, 10 MHz.
- Beam instrumentation (BPMs, ICTs, FCs, BLM, PM etc)) has been tested/cross calibrated during beam ERL Gun beam tests. All this diagnostic has been reinstalled and now successfully used for LEReC project (Wednesday talk).
- Several operation limited factors have been discovered.
- LEReC demands to use of SRF gun as a booster cavity without cathode inserted. It required significant gun modification and longer turn around time. All ERL beam tests have been postponed on Dec 2015.
- Half cell SRF booster cavity has been removed, modified and will be installed for LEReC commissioning in fall of 2017
- Future beam tests are planned to resume when LEReC installation is completed in RHIC IP2 at the beginning of 2018.

As a result of BNL ERL R&D program SRF test faculty infrastructure has been developed at BNL.

- BNL SRF vertical test facility with clean room oven processing commissioned
- Well shielded ERL block house has received all necessary permits to run HP test
- It's fully equipped with cryogenics lines and cryo-refrigeration system
- It has 1 MW CW klystron and 50 kW solid state transmitter operational with all controls and diagnostics available from control room.
- HP couplers, 704MHZ 5cell SRF linac and 704 MHz half cell have been tested during ERL commissioning (2009-2015)
- Test and conditioning of the LEReC Booster 704 MHz cavity (used to be ERL Gun) (June-July 2017)
- After these tests the Block House will formally transform to High Power SRF – RF test facility

Zeynep Altinbas, Dana Beavis, Sergey Belomestnykh, Ilan Ben-Zvi, Paul Bergh, Suresh Denarine, Jesse Fite, David Gassner, Lee Hammons, Robert Lambiase, Edward Lessard, Ramesh C. Gupta, Chung Ho, James Jamilkowski, Stephen Jao, Prerana Kankiya, Robert Kellermann, Nikolaos Laloudakis, Vladimir Litvinenko, George Mahler, Leonard Masi, Gary McIntyre, Wuzheng Meng, Robert Michnoff, Toby Allen Miller, John Morris, Igor Pinayev, David Phillips, Vadim Ptitsyn, Triveni Rao, Pablo Rosas, Scott Seberg, Thomas Seda, Brian Sheehy, Loralie Smart. Kevin Smith, Victor Soria, Andrew Steszyn, Roberto Than, Erdong Wang, Andreas Warkentien, Daniel Weiss, Huamu Xie, Wencan Xu, Alex Zaltsman

and money others.

Thank you all!