

Resonance Control at the Compact ERL in KEK

Takako Miura (KEK)

on behalf of LLRF and SRF Cavity Group

LLRF Group

<u>Takako Miura</u>, Shinichiro Michizono, Feng Qiu, Toshihiro Matsumoto, Hiroaki Katagiri, Dai Arakawa (KEK), Liu Na (Sokendai Univ.)

SRF Cavity Group

Eiji Kako, Takaaki Furuya, Hiroshi Sakai, Kensei Umemori, Taro Konomi, Masato Egi, Kazuhiro Enami (KEK), Masaru Sawamura (QST)

Introduction of cERL

Compact ERL (cERL) is a test facility of 3-GeV ERL as a future light source.

Current status of high power RF sources

	Buncher	Inj-1	Inj-2	Inj-3	ML-1	ML-2
Cavity	NC	2cell-SC	2cell-SC	2cell-SC	9cell-SC	9cell-SC
Cavity Voltage	114 kV	0.7 MV	0.7 MV	0.7 MV	8.6 MV	8.6 MV
Field Gradient (Desgin)		3 MV/m (7.5MV/m)	3MV/m (7.5MV/m)	3MV/m (7.5 MV/m)	8.6 MV/m (15MV/m)	8.6 MV/m (15MV/m)
Q _L	1.1×10^{5}	1.2×10^{6}	5.8×10^{5}	4.8×10^{5}	1.3×10^{7}	1.0×10^{7}
Cavity Length	0.068 m	0.23 m	0.23 m	0.23 m	1.036 m	1.036 m
RF Power @Low beam current	3 kW	0.53 kW	2.6 kW		1.6 kW	2 kW

 \mathcal{M}

Inj2

The "vector-sum" operation in low energy region, β<1, has some difficulties. -> transit time change -> RF phase change

8 kW SSA

BUN

25kW Klystron

lnj1

Inj3

 \mathbf{M}

16 kW SSA 8 kW SSA

300kW Klystron

Digital LLRF System at cERL

Tuner System

Tuner system of Injector Linac

Tuner system of Main Linac

Mechanical Resonance of Inj Cav

<Injector>

4

3

2

3.5

2.5

1.5 1

0.5

0

0

Detune phase (V)

Eacc: 1MV/m

Sinusoidal wave (40V_{pp}) was fed to piezo tuner.

423Hz

400

Mechanical resonance is scanned by sweeping the input frequency.

260Hz

 \bigcirc

Frequency (Hz)

200

Phase detector : 20 mV/deg

INJ1

68Hz

Mechanical Resonance of ML Cav

FFT Analyzer Microsense Controller OUT IN 6.0E-02 OUT IN Microsense (Signal IN) Sine wave OUT **Microsense Mnitor** 5.0E-02 Microsense (swept on I 0~500Hz) Amplitude 4.0E-02 4 5 6 7 8 9 2 **Piezo Controller** IN 3.0E-02 Piezo OUT-Voltage out 2.0E-02 (sine wave) 1.0E-02 0.0E+00 9000 Microsense[mV] 8000 7000 6000 5000 4000 3000 2000 1000 0 8 2 7 9 1 5 6 **Cell Number**

M. Satoh, IPAC2014

Large mechanical resonance exist near 50 Hz.

LLRF System

Digital LLRF Boards

(Mitsubishi Electric TOKKI Systems Co.,Ltd.)

Total 11 boards are used for operation.

	BUN	lnj1	Inj2	Inj 3	ML1	ML2
RF FB board	FBO	FB1	FB2 (Ve	c-sum)	FB4	FB5
Tuner board	TN0	TN1	TN2	TN3	TN4	TN5

- Embedded Linux is working in the PowerPC on FPGA.
- Each board acts as an **EPICS IOC**.
- Data acquisition is performed through GbE bus on the backplane.

Field Feedback Control

Cavity Resonance

For constant acceleration field, double input power is necessary at $\Delta f = \Delta f_{1/2}$ $\Delta f_{1/2} = 65$ Hz for ML cavities ($Q_L = 10^7$)

- Narrow bandwidth for $f_0=1.3$ GHz

 $\Delta \theta = \theta_f - \theta_c$: The phase difference between the input RF and the cavity pickup signal

$$\tan\Delta\theta \approx 2Q_L \frac{\Delta f}{f}$$

To keep resonance frequency, tuner should be controlled to maintain $\Delta\theta$ at zero.

Block Diagram of Resonance Control

Feedback Control: $\Delta \theta = \theta_f(Pf) - \theta_c(cav) \Rightarrow 0$

Cavity field Stability & Microphonics

Waveform of ML Cavities

T. Miura, IPAC2014 @Dresden

Field fluctuation by Michrophonics is stabilized by RF Feedback

Phase noise jitter measurement

using Signal Source Analyzer Agile

Agilent E5052B

M.Egi, PASJ2016 (MOP025)

T. Miura, IPAC2014 @Dresden

Vc Phase Noise with RF FB (10Hz-1MHz)=0.017deg Vc Phase Noise w/o RF FB (10Hz- 1MHz)=0.73 deg

Microphonics is observed at 10 Hz - 400Hz.

Phase noise by Microphonics was suppressed well by RF FB.

Phase noise of Vc with FB was almost the same as that of Master Oscillator.

Countermeasure against Scroll Pump Vibration

9-cell SC cavity: Q_L=10⁷

Field gradient 8.3 MV/m : Operation point (15 MV/m : Design)

The rubber sheet was inserted under the scroll pump. The 50 Hz vibration is suppressed.

For constant input RF power

Momentum Error due to Vector-sum Error & Improvement by tuner feedback parameter

RF Stabilities for Short Time

	lnj1	Inj2 & Inj3	ML1	ML2
Amplitude	0.006% rms	0.012% rms	0.003% rms	0.003% rms
Phase	0.009° rms	0.022° rms	0.010° rms	0.009° rms

Almost satisfied the requirement of 3-GeV ERL

Measurement of Beam Momentum Stability

for confirmation of RF stability

Momentum stability = 0.013% rms

Momentum drift of ~15 minutes period was observed.

What causes Energy Drift?

Time interval of detuning is similar to the interval of energy drift.

Time

Large ripple depends on valve control for liquid N₂.

Input-couplers of injector are cooled by liquid N₂.

<RF source : cavity =1:1 > Cavity phase is stabilized by RF FB.

<Vector-sum operation>

Vector-sum is constant, but each cavity phase fluctuates.

Vector-sum error may cause energy drift.

Possibility of momentum drift caused by vector-sum error

(1) Vector-sum calibration errorAmplitude & Phase calibration error

 (2) for low beam energy (β < 1), transit time is affected by cavity field.
Injection energy : 1.63MeV@Inj2, 2.36 MeV@Inj3 Cavity fields changes => Beam phase changes.

In order to minimize the momentum fluctuation due to the vector-sum error, "detuning" should be stabilized.

Example 2 Result of Resonance FB Control Improvement

Higher FB gain in resonance control is adopted for small detuning.

Measurement after modification of tuner feedback gain

Large momentum drift disappeared.

=> Beam momentum jitter $\Delta P/P = 0.003\%$ is achieved.

Summary

- Digital control boards are applied to RF feedback and tuner control.
- Owing to the stiff cavity structure, so detuning by Michrophonics does not influence to the operation.
- The field fluctuation due to Michrophonics is well suppressed by RF feedback.
- Vector-sum operation has some difficulty for low beam energy due to different transit time.
- By applying high FB gain for piezo tuning, the detuning fluctuation due to liquid N₂ flow rate has been suppressed.
 Beam energy drift caused by vector-sum error has become small.

0.003% momentum stability is achieved.