

Cornell Laboratory for Accelerator-based Sciences and Education (CLASSE)

High brightness electron source using cryo-DC HV photogun

Ivan Bazarov (Cornell University)

Acknowledgements

 Hyeri Lee (PhD student)

- Xianghong Liu
- Luca Cultrera
- Val Kastroun
- Bruce Dunham
- Colwyn Gulliford
- Adam Bartnik

- Funding by the NSF Grant No. PHY-1416318
- And the DOE DE-SC0014338 and DE-SC0011643

- 1. Drivers for high brightness
- 2. Experimental evidence in favor of cooling cathodes
- 3. Cryo-cooled HV DC gun concept
- 4. Simulated performance
- 5. Gun construction & first beam

🛞 Brightness, Emittance and Disordered Cathodes 🚳

- x100 brighter electron beams through better photocathodes, guns, beam dynamics, etc.
 - Transforms both large scale facilities and compact University-scale setups

Toward a molecular movie for biological processes with electrons...

- 1) Coherence length \geq protein unit cell (~few nm)
- 2) Time resolution ~100fs (ultrafast scale)
- 3) Number of electrons (for signal) $\ge 10^5$

$$\frac{L_{c,x}}{\lambda_{e}} = \frac{1}{\sigma_{\gamma\beta_{x}}}$$
reduced Compton wavelength
final spot size
$$\frac{L_{c,x}}{\lambda_{e}} \propto f_{e} \sigma_{x} \sqrt{\frac{m_{e}c^{2}}{\text{MTE}}} \begin{cases} cathode field \\ (E_{0}/q)^{1/2}, A \gg 1 \quad ("pancake") \\ E_{0}(\sigma_{t,i}/q)^{2/3}, A \lesssim 1 \quad ("cigar") \end{cases}$$
cathode emittance

preservation ratio $\in (0, 1]$

Cooling alkali antimonides to 90K

What happens if we cool the cathode to cryogenic temperature?

As T lowers from 300 K to 90 K, MTE should lower from 25 to 8 meV

actual MTE ~14 meV or 160 K equiv. temp.

- We suspect that the cathode roughness manifests itself here
- Active research ongoing that promises much smoother surface
- Our Monte-Carlo modeling of the bulk scattering suggests cryocooling can bring MTE further down

Transmission cathodes

When you shine the laser from back, electrons travel longer through the cathode

Back illumination makes brighter electron beams!

~µm size laser spot can be obtained using transmission cathode \rightarrow place a ~mm focusing lens in-vacuum behind the glass substrate

Glass substrate

1) HV DC photoemission gun

- Voltage: >200kV
- Cathode E-field: >10MV/m
- 2) Cathode cryo-T (20K)
- 3) Compact design

Gun construction

Cryo-tests

HV processing

Puck transfer

First beam!

- Made first beam at ~200 kV (10MV/m) at both RT and cryo-T (40K)
- The gun is now being relocated to its permanent home, more results soon!