MOIACC002 Cathodes A (08:55 - 10:10) on 19-JUN-17 ERL17 CERN

DEVELOPMENT OF SRF GUN APPLYING NEW CATHODE IDEA USING A TRANSPARENT SUPERCONDUCTING LAYER

KEK: <u>Taro Konomi</u>, Y. Honda, E. Kako, Y. Kobayashi,
S. Michizono, T. Miyajma, H. Sakai,
K. Umemori, S.Yamaguchi, M.Yamamoto
MHI-MS: T. Yanagisawa
MHI: R. Matsuda

Outline

1. Target of KEK SRF GUN

- 1. Target parameters
- 2. Design concept

2. Cavity design

- 1. RF parameters
- 2. Vertical test results

3. Photocathode development

- 1. Transparent superconductor
- 2. Photocathode development chambers
- 3. Quantum efficiency at low temperature
- 4. Initial emittance
- 5. Critical magnetic field

4. Plan of the KEK SRF gun development 5. Summary

1-1 Target of the KEK SRF gun

- KEK Started SRF gun development for future linac base accelerator. ٠
- 3 GeV KEK- ERL was selected as the target parameters to simulate the gun ٠ design.
 - Target parameters are same as KEK ERL DC gun.
- Key point of the SRF gun development is back side excitation structure. ٠

Target parameters (KEK-ERL)

Parameters	Value
RF frequency	1.3 GHz
Beam energy	2 MeV
Current	100 mA
Bunch length (rms)	3 ps
Bunch charge	77 pC
Repetition frequency	1.3 GHz
Normalized emittance	$< 1\pi$ mm mrad
Energy Spread	< 0.1%

1-2 Design concept of the KEK SRF gun

- Merits of back side excitation
 - Simple RF cavity and beam line structure.
 - Laser control could be more precisely.
 - Laser 3D distribution control is necessary for low emittance beam.
- We propose a photocathode structure using transparent superconductor.
 - The superconductor protects transparent substrate from RF damage
 - RF leakage from photocathode can be blocked and surface electric field on the photocathode can be kept high.

2-1 RF parameters

- KEK SRF gun #1 was designed to check basic RF parameters (maximum Esp, Qo).
- Beam parameters and cavity shape were designed by SUPERFISH and GPT.
 - Slope of the cavity was designed to compensate the space charge effect.
- Target Qo values are estimated from ILC target.

Parameter	Value
Beam energy	2 MeV
Projected emittance	0.6 п mm.mrad
Projected energy spread	0.09%(1.84 keV)
Peak electric field	41.9 MV/m
Peak magnetic field	95.2 mT
RF phase	55°
Geometrical Factor	135.6 Ω (TESLA 270 Ω)
Target surface resistance	30 n Ω (ILC target)
Target Q value	4.5×10 ⁹
Target cavity loss	8 W

2-1 RF parameters on photocathode

٠

- Peak electric on the photocathode is 70% of iris peak electric field.
- RF critical magnetic field of the photocathode should be higher than 2.6 kA/m (3.3 mT).
 - It is enough smaller than niobium. Niobium is ~200 mT at 2K
- High gradient tests (Vertical tests) were done with dummy cathode rod.
 - Dummy cathode rod was shaved out from bulk niobium and doesn't have the cathode mount structure.

Dummy cathode rod made of niobium

2-2 Vertical test results

- The cathode plug cleaning is important to achieve high gradient
- After HPR, the peak surface electric field reached 75 MV/m and X-ray couldn't be observed.
- However HPR should not apply to the transparent superconductor because it is very thin and delicate.
 - We have to search other method for cleaning for example hydrogen cleaning or sputtering.

3-1 Concept of the photocathode.

- There are 4 layers in the photocathode.
 - Photocathode surface is K_2 CsSb.
 - The lattice constant of K_2 CsSb (0.861 nm) is close to LiTi₂O₄ (0..8405 nm).
 - The transparent superconductor $LiTi_2O_4$ can block the RF leakage and transmit the excitation visible light at the same time
 - $MgAl_2O_4$ is the substrate for epitaxial growth of $LiTi_2O_4$.
 - AR coating is a option for increasing laser efficiency.
- The photocathode performances are evaluated by quantum efficiency, initial emittance and critical DC magnetic field.

3-1 Transparent superconductor

•

- Transition temperature is ~13K. Transmittance is 75% at 530nm.
 - If we will apply AR coating to decrease the reflection. \Rightarrow We will use the MgF₂ or TaO₅/SiO₂/TaO₂ layer.

Parameter	Value
Tc mid	13.3 K
Resistivity	$3.3 \times 10^{-4} \Omega$ cm (at R. T.)
Lattice constant	$a_{LTO} = 0.8405 \text{ nm}$
Transmittance	75 % (at 530 nm)
Carrier density	$1.1 \times 10^{22} \ cm^{-3}$
Hall mobility	0.8 (280K), 6.0 (15K) $cm^2V^{-1}S^{-1}$

3-2 Photocathode development chambers

Quantum efficiency

- QE was measured at deposition chamber.
- Xenon lamp were used to measure QE spectrum.
- Excitation light can be inject from back and front. Transmittance can be measured.

Initial emittance measurement

• The photocathode can be cooled down to 6.7 K.

Critical magnetic field

 The photocathode was taken out from chamber and measured by SQUID MPMS7 (Quantum Design, Inc.)

3-3 Photocathode deposition

- The photocathode deposition chamber has cesium (SAES), potassium (SAES) and bulk antimony evaporation sources.
- Laser and xenon lamp can inject from front and back side of the photocathode.
- The chamber vacuum is 6x10⁻⁸~1x10⁻⁷ Pa during the deposition.
- Base pressure is 1x10⁻⁸ Pa.

Procedure	Condition
Heat cleaning	~500 °C x 3 hours
Sb deposition	150°C , Thickness 10nm (Transmittance decrease 20-30%)
K deposition	~120 °C, QE peak
Cs deposition	100 °C, QE peak

11

3-3 Quantum efficiency

- The threshold energy is 1.85 ± 0.15 eV. This is same value as other studies. \Rightarrow K₂CsSb deposition on the transparent superconductor was successful.
- The ratio of back and front side QE can't be explain by the transmittance of LTO.
 ⇒ We suspect Sb rich layer exists on the boundary.
- But It is not a problem for gun operation because we will use 532nm laser.
 - At 532nm, back side QE is 90% of the front side.

3-3 Quantum efficiency at low temperature

- We transferred the photocathode to initial emittance chamber which has a LHe small cryostat.
- QE was decreased during cooling.
 - We suspect residual gas was absorbed on the photocathode surface and increase the surface work function.
- Further study of photocathode performance at cryogenic temperatures and ways to improve this performance is essential for the photocathode development.

3-4 Initial emittance

- Initial emittance was calculated by measuring the expansion of beam size.
- Parallel plate DC gun consists of thin anode mesh and cathode block.
- Laser was inject from backside of the photocathode. laser spot side is $\Phi \sim 0.1$ mm

3-4 Initial emittance

- The measurement results at RT almost agree with theory.
- Initial emittance should be constant regardless of the electric field
 - The measured data is rising along with electric field.
 - We suspect anode was bended with electric field, because it is $20 \ \mu m$ thin film.

3-4 Initial emittance

•

- The measurement results at RT almost agree with theory.
 - Initial emittance should be constant regardless of the electric field
 - The measured data is rising along with electric field.
 - We suspect anode was bended along with electric field, because it is $20 \ \mu m$ thin film.

3-5 Critical magnetic field

- The critical temperature and critical magnetic field were not changed before and after K₂CsSb deposition.
- Critical magnetic field is higher than the SRF gun operation.

4 Plan of the KEK SRF gun development

- A new cathode rod for KEK SRF gun #1 can mount 5mm square sample.
- It can monitor the RF leakage. The coupling is 1x10¹¹.

4 Plan of the KEK SRF gun development

- We are designing the SRFGUN #2 for small current beam test.
- This is not a final version.

5 Summary

- KEK SRF gun has been developed for 3GeV KEK ERL
- Prototype #1 cavity was designed to check the RF parameters.
 - Target Esp is 42 MV/m, it correspond to Eacc = 20MV/m of TESLA cavity.
 - After HPR, the peak surface electric field reached 75 MV/m and X-ray couldn't be observed.
 - We have to search other method for cleaning because LiTi_2O_4 is thin and delicate.
- Basic properties of the photocathode using transparent superconductor were measured.
 - QE ratio from back side was 90% of front side at 532 nm.
 - Initial emittance almost agreed with theory.
 - Critical magnetic field satisfy the SRF gun operation.
 - QE decrease during cooling down.
 - Further study of photocathode performance at cryogenic temperatures and ways to improve this performance is essential for the photocathode development.

Thank you for your attention !