WG5: ERL Applications Summary

Peter McIntosh (CI/STFC Daresbury Laboratory)
Ivan Konoplev (JAI/Oxford University)

WG5: ERL Applications Programme

Tue 20 th June	Session 1		Application	
08:30 - 08:55	LERF - New Life for the Jefferson Lab FEL	Chris Tennant (Jlab)	FEL	
08:55 – 09:20	Novosibirsk ERL based FEL as User Facility	Vitaly Kubarev (BINP)	FEL, THz, Compton	
09:20 – 09:45	Asymmetric, Dual Axis Cavity for ERL: recent R&D and possible applications	Ivan Konoplev (JAI)	EUV, THz	
	Session 2			
10:00 – 10:25	Photon Science Exploitation of ALICE in Biomedical Science	Mark Surman (STFC)	FEL	
10:25 – 10:50	EUV ERLs for Semiconductor Integrated Circuit Lithography	Norio Nakamura (KEK)	EUV	
10:50 – 11:15	Applications for CBETA at Cornell	Georg Hoffstaetter (Cornell)	THz, Compton	
11:15 – 11:40	Applications by means of the accelerator technologies based on cERL	Hiroshi Kawata (KEK)	Compton, Isotopes	
Thur 22 nd June	Session 3			
13:15 – 13:40	ERL Upgrade Plans for the ARIEL e-Linac	Bob Laxdal (TRIUMF)	FEL, THz, Compton	
Fri 23 rd June	Session 3			
08:30 – 08:55	Generation of High-flux High-energy Ultra-short Vortex Photon Beams from JLab ERL Facility	Shukui Zhang (Jlab)	Compton	
08:55 – 09:20	Nuclear Physics Experiments at Mesa	Kurt Aulenbacher (Mainz U)	Polarised beams	
09:20 - 09:45	ERL developments for eRHIC	Vladimir Litvinenko (Stony Brook U)	Cooling	

FEL, THz & Photon Applications								
Field	Application	Group	Energy (MeV)	Current/Charge	Key Parameters	Size	Critical Performance Needs?	Challenges
THz	TD Spectrometry & Photochemistry	BINP			2.12THz			
	Optical Discharge	BINP			2.3THz, 66ps pulses			
	Material optical properties (ellipsometry)	BINP						
	Biological irradiation	BINP			, at			
	Detonation dynamics	BINP			11/0			
	Pump-probe	BINP			5			
	Surface Plasmon Polaritons	BINP		00				
	Bessel Beams	BINP		x0 7				
	СВЕТА	Cornell	.0	500pC @ 10ps, 320mA, 4-pass	4THz	35m x 15m	Low ERL loss rate	
IR-FEL	Spintronics (magnetoactive materials)	BINP	K		λ=9.3um			
	ARIEL ERL Upgrade	TKIDNII	50	10mA	λ=1 - 20um		High brightness PI	RLA & ERL switching
	LERF – Dark matter search	JLab		60pC @ 3.3ps		60m x 5m	Reduce backg'd rad'n & beam loss	
	IR Microscopy – Cancer Diagnostits	Daresbury	30	80pC @ 0.1ps	λ=9.3um	40m x 25m	FEL λ and power	FEL Stability
Compton	СВЕТА	Cornell			412keV, 0.4% BW	35m x 15m	Low ERL loss rate	
	Compact Los (X-xy imaging)	KEK	20	58uA	6.9keV	90m circ.	Laser power	
	LCS v-ray (nuclear detection)	KEK	350					

1A

10mA, 60pC,

<10mA

JAI

KEK

KEK

30

800

20-50

Compact ERL

Industry ERL

⁹⁹Mo/^{99m}Tc

EUV

Isotopes

High current injector

Small footprint

FEL stability,

Availability (>98%)

5m x 2m

200m x 20m

λ=13.5nm, >10kW

Particle & Nuclear Physics Applications

Field	Application	Group	Energy (MeV)	Current/Charge	Key Parameters	Size	Critical Performance Needs?	Challenges
Compton	X-ray vortex photon beams (LERF)	JLab	100	1mA	0.1 – 10keV		LG Laser power	OAM characterisation
	γ-ray vortex beams (CEBAF)	JLab	12000	0.07	3.6GeV			
Polarised Beams	Low momenta characterisation	Mainz U	155	150uA			Polarised electron injector	
Cooling	Spin physics, imaging, strong colour physics	BNL	30	3.7nC			Polarised electron injector	SRF linac & HOMs

ERL Needs & Challenges

For THz, Compton, IR, EUV and X-Ray, NP and PP applications:

- Key performance requirements:
 - Stability areas, availability
- Challenges generating ERL output.
- Delivery mitigation strategies.
- Future application field priorities (demand):
 - THz
 - Compton
 - FEL
 - EUV
 - X-Ray
 - Nuclear Physics
 - Particle Physics

THz Applications

Performance Requirements:

- High power & high spectral range is key requirement ideally upto 3THz.
- Broadband, short-pulse & high repetition-rate plus highly-monochromatic coherent THz are conflicting needs.
- Ideal would be to have the same ERL deliver both!
- High charge, high repetition rate, with good pulse-pulse stability is key ERL requirement.
- ELBE@HZDR delivers high-field pulses with 1nC bunches, providing 0.2THz to 5THz. Challenges:
- Jlab FEL generates ~1kW THz which presents beam-dynamics problems.
 - Electron beam performance impacts significantly on THz generated (bunch length, RF phase).
 - Difficult to generate consistent THz characteristics.
- THz transport over long distances, ideally should be close to ERL.

Mitigation:

- The use of a THz cavity would generate a more consistent THz beam for users.
- For optimum THz transport, precise alignment and source-point tracking essential
 Jlab use a HeNe laser alignment system.

Demand:

- ELBE provides 6wk operation, every 6 months, factor of 3 over-subscribed!
- As storage rings move towards diffraction-limited performance, the availability of THz is expected to increase.

FEL Applications

Performance Requirements:

- Machine stability cited as a primary requirement wavelength, power, beam pulse-pulse stability.
- High stability needed throughout the entire accelerator chain.

Challenges:

Achieving required FEL stability.

Mitigation:

Fast feedback systems: Laser, RF, FEL, temperature etc.

Demand:

 ERLs can potentially achieve much higher repetition rates than a single-pass linear machine, and this is something which should be pursued at national lab level – particularly delivering hard x-rays, combined with a gamma ray Compton source.

EUV Applications

Performance Requirements:

- High EUV power >10kW typically needed, with >98% availability.
- High stability needed throughout the entire accelerator chain.

Challenges:

Achieving required FEL stability and availability.

Mitigation:

- High levels of sub-system redundancy needed: Photo-injector, linac, cryoplant, FEL – even complete machine redundancy!
- Reduce sub-system trips, relaxing operational levels, simplifying system integration, reduce accelerator size.

Demand:

- Industry EUV FEL accelerators driven by IC customer demands for higher transistor density.
- Next generation technology will require <13.5nm capability.
- Industry not yet fully committed to accelerator technology delivery, but this could switch very quickly if IC customer demand intensifies.

Compton (X-ray & γ-ray) Applications

Performance Requirements:

- For LCS medical imaging, require 50MeV, 10mA and >100kW laser power to get ~40keV X-ray energy.
- Need high energy for short exposure times.
- High energy ERL needed for γ -ray LCS with high power LG laser.

Challenges:

 Achieving required laser power in small footprint for both X-ray and γ-ray generation.

Mitigation:

 Laser enhancement cavity, store 2-beams simultaneously with fast polarisation switch – double laser power of LCS (KEK/CBETA) – not yet demonstrated.

Demand:

Compact ERL footprint to fit in hospital environment (10m x 6m) for X-ray LCS.

NP/PP Applications

Performance Requirements:

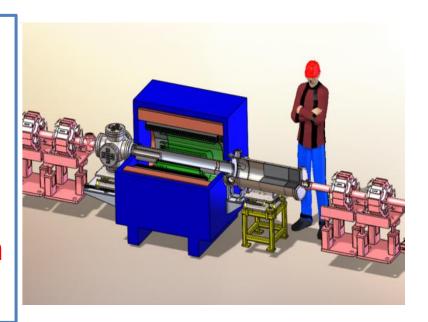
 High performance polarised electron injector is key technology requirement for cooling and spin polarised experiments.

Challenges:

- Achieving required peak current and operational QE.
- Precise control of beam current needed for spin polarisation measurement of exotic particles.

Mitigation:

 Optimised diagnostics needed to effectively characterise emittance, energy spread and PC performance.


Demand:

Spin physics and imaging

LERF - New Life for the Jefferson Lab FEL

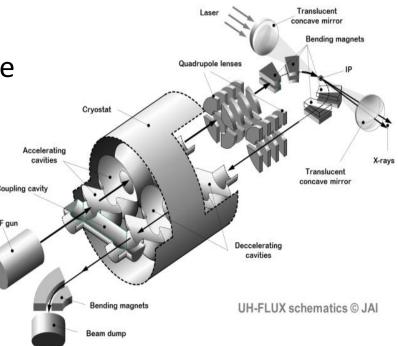
Chris Tennant (Jlab)

- The Dark-Light Experiment overview and the future work
- Goal of the recent experiments: run power with internal gas target.
- MIT took data with and without gas at various magnet strengths.
- Development of the machine and possible <u>applications</u>.
- Design of single pass ERL cooler
- Design of multi-turn CCR cooler
- Demonstration of CCR using LERF infrastructure
- Medical isotope production
- Low energy target irradiation
- Intense positron source

Novosibirsk ERL based FEL as User Facility

Vitaly V. Kubarev (BINP)

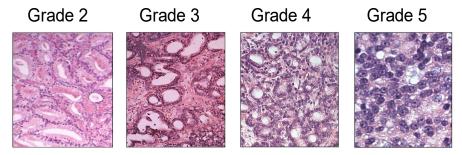
Laser	Terahertz	Far-Infrared	Infrared		
Status	In operation since 2003	In operation since 2009	In operation since 2015		
Wavelength, μm	90 – 240	90 – 240 37 – 80			
Relative line width (FWHM), %	0.2 – 1	0.2 – 1	0.1 – 1		
Maximum average power, kW	0.5	0.5	0.1		
Maximum peak power, MW	0.9	0.9 2.0			
Pulse duration, ps	30 – 120	20 – 40	10 – 20		
Pulse repetition rate, MHz	3.7 – 22.4				
Polarization	Linear, > 99.6 %				
Beams	Gaussian beams with diffraction divergence				


- 1. 14 different applications are developed and conducted at Novosibirsk FEL.
- 2. 26 working stations.
- 3. Users have access to the facilities 4-5 days a week with the stops of machine operation during the summer period.

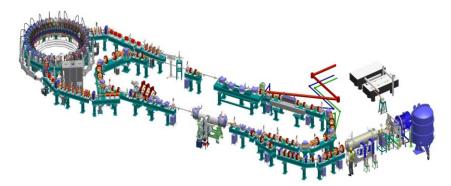
Typical radiation of THz NovoFEL - continuous train of 100 ps pulses:

Asymmetric, Dual Axis Cavity for ERL: Recent R&D and applications

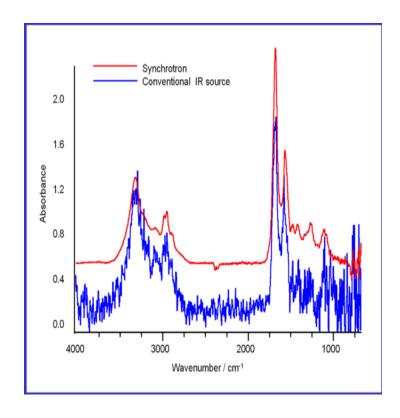
Ivan Konoplev (Oxford university)


- Overview of possible applications outside research community with market values for each application.
- Presented the most recent development of the asymmetric dual axis cavity for ERL.
- 7-cell and 11-cell cavities are in the laboratory and the RF studies will be carried out during this summer.
- Goal to get 1A class ERL system for THz and EUV applications.

Photon Science Exploitation of ALICE in Biomedical Science

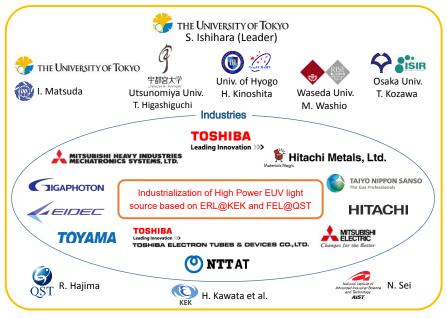

Mark Surman (STFC)

1. Development of a more effective cancer diagnostic scale.

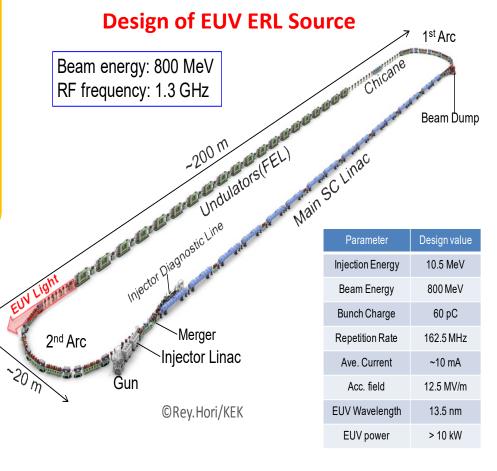


Cancer severity

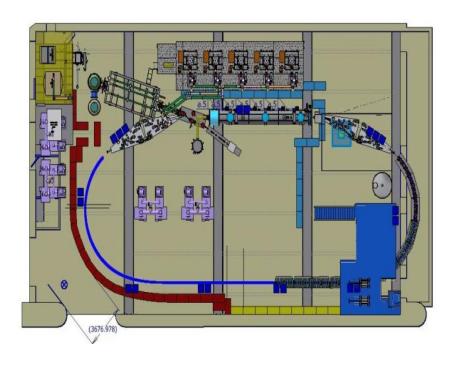
- 3. Improving Spatial Resolution Breaking through Diffraction Limit: sub-micron imaging.
- 4. ALICE: "Accelerators and Lasers in Combined Experiments" progress was discussed.


2. Advantage of electron beam driven source of radiation over conventional IR source shown.

EUV ERLs for Semiconductor Integrated Circuit Lithography


Industry Study Group

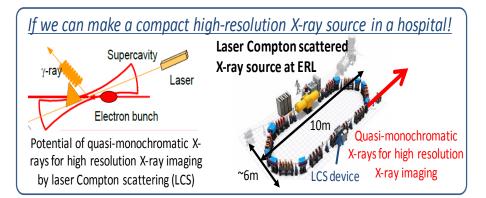
Norio Nakamura (KEK)


Key challenge to achieve >98% availability:

- Electron gun PC lifetime & exchange
- SRF linac processing & trip rate
- Undulator demagnetisation issues
- Cryoplant high pressure operation and maintenance

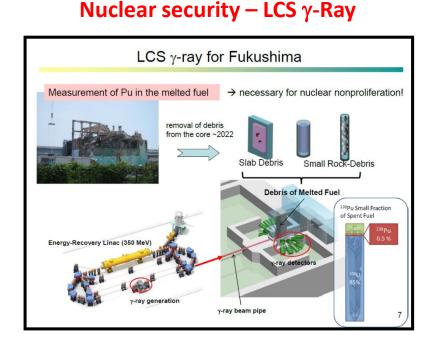
Applications for CBETA at Cornell

Georg Hoffstaetter (Cornell University)

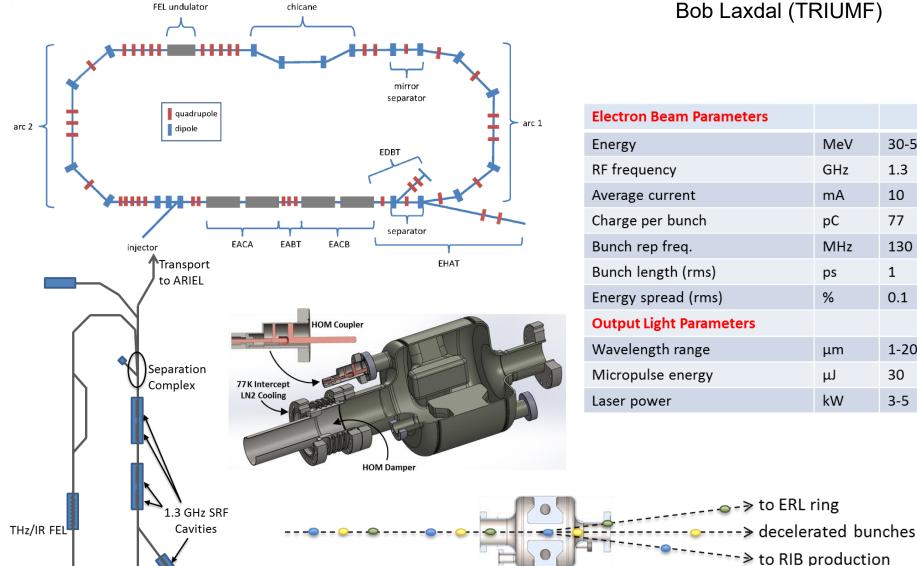


- DarkLight an experiment to find dark matter particles
- Compact Compton source for hard x-rays complementing CHESS' range
- THz laser complementing CHESS' range
- Beam for time-resolved electron diffraction from 1-6MeV
- Beam for Plasma Wakefield Acceleration with High Transformer Ratio
- eRHIC accelerator testing more detailed eRHIC R&D
- eRHIC cavity testing with beam
- ASML medical isotope cavity testing with beam
- Generic ERL accelerator physics
- Electron cooler tests ERL tests for JLEIC
- · Preparations for Perle
- Preparations for LHeC
- High-Power beam dynamics testing
- Permanent magnet and FFAG test bed for future accelerators
- ERLs-new beam operating regime: Linear acceleration and deceleration to capture
 the energy of spent beam, like a linac but without the power limit on beam current,
 as spent beam provides the power.
- Loss rates have to be limited.

Applications of the Accelerator Technologies based on cERL


Medical imaging – LCS

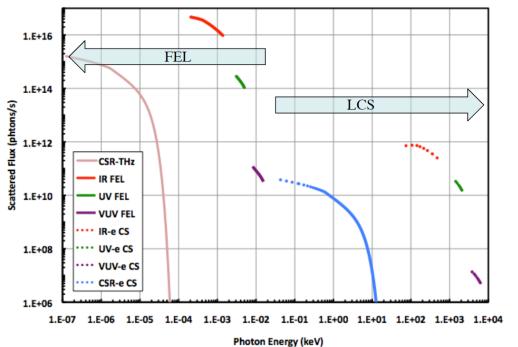
Result of March/2014 X-ray imaging with a LCS beam X-ray Energy 7keV Exposure time 1600 sec X-ray imaging device for medical use Main issues for medical application the view point of neurosurgery courtery of K. Intravasquiarexurgeuvectme 2) TOPEN FOR UT FREE EW coil: StyffAMeV. StentASupport aneurysmicand lassta biaving coil stop bleeding X-ray Energy ~40 keV Exposure time < 0.1 sec An X-ray image of a hornet taken with teacts ducation land clearly visualized Starting point of medical age under surgery HyPix-3000 from RIGAKU. Detector was apart from the sample by approx. 2.5 m. Provided by the Department of, TUPWA066 16 application The stent can not be seen Neurosurgery, University of Tsukuba



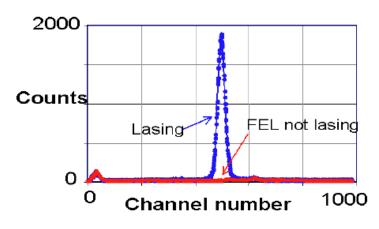
No alexander of the Company

Hiroshi KAWATA (KEK)

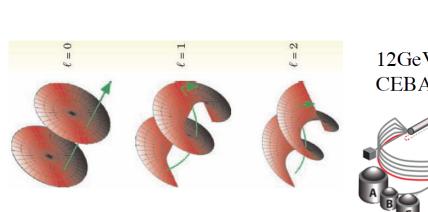
ERL Upgrade Plans for the ARIEL e-Linac

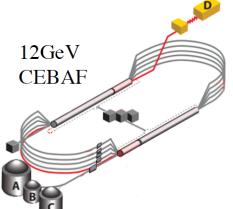


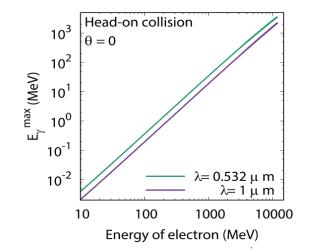
Bob Laxdal (TRIUMF)

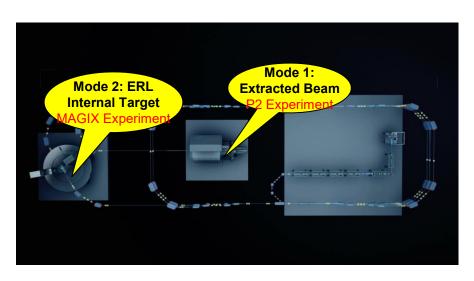

Electron Beam Parameters					
Energy	MeV	30-50			
RF frequency	GHz	1.3			
Average current	mA	10			
Charge per bunch	pC	77			
Bunch rep freq.	MHz	130			
Bunch length (rms)	ps	1			
Energy spread (rms)	%	0.1			
Output Light Parameters					
Wavelength range	μm	1-20			
Micropulse energy	μЈ	30			
Laser power	kW	3-5			

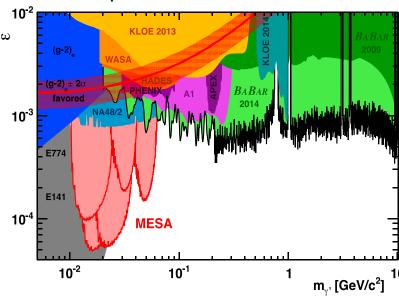
Generation of High-flux High-energy Ultrashort Vortex Photon Beams from JLab ERL


LERF FEL Facility




Shukui Zhang (Jlab)


Measured 5.12 keV X-ray Spectrum (Tunable from 3.5 to 18keV)



Nuclear Physics Experiments at Mesa

Kurt Aulenbacher (Mainz U)

MESA Dark photon research

MAGIX

Operation of a high-intensity (polarized) ERL beam in conjunction with light internal target

- → a novel technique in nuclear and particle physics
- → measurement of low momenta tracks with high accuracy
- > competitive luminosities
- → Small device if compared to GeV scale spectrometer set ups!

ERL developments for eRHIC

Vladimir Litvenenko (Stony Brook U)

Speaker input still needed!

- Please provide additional input to parameter table, send to:
 - Peter.mcintosh@stfc.ac.uk
 - Ivan.Konoplev@physics.ox.ac.uk