

Generation of High-flux High-energy Ultrashort Vortex Photon Beams at JLab

S. Zhang¹, Y. Taria², J. Grames¹, D. Gaskell¹, M. Poelker¹

A. Afanasev³, and Carl Carson⁴

¹Thomas Jefferson National Accelerator Facility ²Research Institute for Measurement and Analytical Instrumentation, National Metrology Institute of Japan, National Institute of Advanced Industrial Science and Technology (AIST), Japan ³George Washington University ⁴The College of Williams and Mary

ERL Workshop 2017

June 23, 2017, CERN

Outline

- Review of Laser Compton Sources
- Vortex Beams
- □ High Energy Vortex Beams and Challenges
- Summary and Acknowledgement

World-wide ERLs

🎯 🕬

S. ZHANG, ERL Workshop, June, 2017, CERN

Jefferson Lab

Applications of ERLs

High Power Photon Beams

High average power FELs, tunable, covering EUV~THz

- Nuclear Physics: DarkLight
- High Current Accelerator Science & Technology Electron Cooling/ next generation colliders (JLEIC)
- Isotope Production
- Laser Compton sources: x-rays/Gamma-rays
- UED, LWFA,...

Benefit to many: JELIC, eRHIC, Perle, LHeC,.....

S. ZHANG, ERL Workshop, June, 2017, CERN

World-wide Effort on LCS (back in 2013)

- LEPS@Spring8 (Japan), operation & User Program
 8GeV Storage Ring/UV laser, 2GeV/10⁶ ph./s.
- HIGS@Duke (US), operation & User Program
 0.24~1.2GeV Storage Ring/FEL NIR~UV, 1~100MeV/10¹⁰ ph./s.
- LBSF@M4, MAX-IV Lab, (Sweden), proposal
 - 1.5GeV Storage Ring/299,244nm Laser, 100~170MeV/4x10⁶ ph./s.
 - AIST (Japan), operation & development 40MeV Linac/TW 800nm Ti:S, 10~40keV/5x10⁶ ph./s.
 - **Lyncean Tech. (US)**, *commercial product*
 - 40MeV Storage Ring/FP cavity Laser, 7~35keV/10¹¹ ph./s.
 - ThomX, (France), *under construction*

For more refer to Y. WU, talk at IPAC12.

Huge interests in Light Sources

S. ZHANG, ERL Workshop, June, 2017, CERN

Jefferson Lab

Other Applications

Accelerators

Polarized positron generation E-beam diagnostics

National Security

Non-destructive nucl. materials detection

Medical

Medicine, Isotope production, Cancer diagnostics

Industriy

Nucl. waste treatment, product inspection

- Materials Research Novel scintillators/detectors
- etc.

S. ZHANG, ERL Workshop, June, 2017, CERN

Jefferson Lab

A Bit of Background

Topics for Compact Light Sources (2010 BES Workshop) To develop:

- IR laser systems: kW avg power, fs pulses, kHz rep rates
- Laser storage cavities: 10-mJ, ps&fs pulses focused to um beam sizes
- High-brightness, high rep rate electron sources
- CW 4K superconducting RF linacs

Other Topics Specific to Compton Sources

- Laser cavities tailored for specific Compton sources in terms of power, rep rate, beam size, polarization, and collision geometry (two-mirror & multi-mirror ring resonators, non-Gaussian mode cavities)
- Storage ring Compton sources:
 - Optimizing final focusing design and mitigate its impact on beam dynamics
 - General impact on beam dynamics at very high intensities
- Gamma-ray sources: Energy recovery consideration

See "Report of BES Workshop on Compact Light Source", W. Barletta, M.Borland, May 2010

An ERL with LCS

KEK cERL

Proposed LCS Sources

CBETA Application

Oxford Design: AERL

JLAB ERL

A Facility for NP Research

DarkLight: Aperture Test For Internal Target

- Sustained 8-hr high current beam transmission through a 2 mm aperture
- Beam size: 50 um (rms)
- Beam loss: a few ppm
- Nearly 0.5 MW CW beam power
- Surpassed the users' initial expectation
- Demonstrated JLAB ERL unique capability

NIM. A729 223 (2013)

JLAB FEL Photon Source Spectral Characteristic

Laser Compton Scattering

$$E_{\gamma} = \frac{E_{l}(1 + \beta \cos \alpha)}{1 - \beta \cos \theta + E_{l}(1 + \cos(\alpha - \beta))/E_{e}}$$
$$E_{\gamma} \sim \frac{4\gamma^{2}E_{l}}{1 + \gamma^{2}\theta^{2} + 4E_{l}E_{e}/m^{2}c^{4}} \qquad (\alpha \sim \beta)$$

 $(\alpha \sim 0, \text{head-on collision})$

Back-scattering $\alpha \sim 0^{\circ}, \theta \sim 0^{\circ}, \theta$

$$E_{\gamma} \sim 4\gamma^2 E_l$$

Crossed-angle $\alpha \sim 90^\circ, \theta \sim 0^\circ$,

 $E_{\gamma} \sim 2\gamma^2 E_l$

 E_l : initial photon energy E_e : e-beam energy E_{γ} : scattered photon energy

Laser-Compton-Scattering

More About Compton Scattering

Assuming Gaussian beams, in *linear interaction* regime, total scattered photons

$$N_{\gamma} = \frac{N_e N_l \sigma_t}{2\pi \sqrt{\sigma_{ey}^2 + \sigma_{ly}^2} \sqrt{(\sigma_{ex}^2 + \sigma_{lx}^2) \cos^2(\alpha/2) + (\sigma_{ez}^2 + \sigma_{lz}^2) \sin^2(\alpha/2)}} F\zeta$$

head-on collision with matched beams,

$$N_{\gamma} = \frac{N_e N_l \sigma_l}{2\pi \sqrt{(\sigma_{ex}^2 + \sigma_{lx}^2)(\sigma_{ey}^2 + \sigma_{ly}^2)}} F$$

Brightness (ph. /A s $\Omega 0.1\%$ BW)

$$B_{\gamma} \approx 1.5 \times 10^{-3} \frac{N_e N_l \sigma_t \gamma^2}{(2\pi)^3 \varepsilon_e^2 \sigma_l^2} F$$

 N_l : # of initial photon N_e : # of e-beam energy N_γ : scattered photon flux γ : e-beam energy ζ : efficiency factor F: rep rate, ε_e : normalized e-beam emittance σ_e : e-beam size σ_l : laser beam size σ_t : CS cross section

Ref: J. Yang, NIMA 428 (1999). W.J. Brown,, PRST 7 (2004).

What Can Be Expected From JLAB FEL

LCS Exp. at JLAB IR FEL DEMO (2000)

Laser Polarimeter

M1

- Hall A Compton Polarimeter, 1~5kW/532nm
- Cavity power enhancement: up to 5000
- Much more efficient with ps laser

M2

S1

S2

Optical Schematic of HALLA Compton Scattering Laser System

Vortex Beams: Helical wave front

S. ZHANG, ERL Workshop, June, 2017, CERN

Jefferson Lab

Vortex Beam Porpagation

Poynting vector of Laguerre-Gaussian mode

$$\mathbf{S} = \mathbf{E} \times \mathbf{B} \propto \left(\frac{\rho z}{z^2 + z_R^2} \mathbf{e}_{\rho} + \frac{\ell}{k\rho} \mathbf{e}_{\phi} + \mathbf{e}_z \right)$$

spread of the beam

Spiral Poynting vector leads to Obital Angular Momentum (OAM) Electric and magnetic field is slightly against the z-axis

Generation of Vortex & OAM

Spiral phase plate

Hologram

Without filters

Electron Vortex beam

Electromagnetic radiation from an electron

J. Courtial et al., Opt. Comm. 159 (1999) 13. M. W. Beijersbergen et al., Opt. Comm. 112 (1994) 321. B. M. Kincaid et al., J Appl Phys 48 (1977) 2684.

About Vortex & OAM

Journal papers

- Phys. Today 57 (2004) 35.
- Nat. Phys. 3 (2007) 305.
- Laser & Photon. Rev. 2 (2008) 299.
- Adv. Opt. Phot., 3 (2011) 161.

Books

- L. Allen et al., "Optical Angular Momentum" IOP publishing, 2003.
- A. Bekshaev et al., "Paraxial Light Beams with Angular Momentum" Nova Science Publishers, 2008.
- D.L. Andrews, "Structured Light and its Applications" Academic Press, 2008.
- J. P. Torres, "Twisted Photons" Wiley-VCH, 2011.
- D.L. Andrews, "The Angular Momentum of Light" Cambridge University Press, 2013.

ISSN 1364-503X | Volume 375 | Issue 2087 | 28 February 2017

PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A

MATHEMATICAL, PHYSICAL AND ENGINEERING SCIENCES

Optical orbital angular momentum

Theme issue compiled and edited by Stephen M. Barnett, Mohamed Babiker and Miles J. Padgett

Application with Vortex Beams

Demonstrated

- OAM transfer to micro particle
- Quantum entanglement
- Creation of metal nano needle
- Terabit data transmission

Proposed

- X-ray dichroism
- Magnetic mapping using electron vortex
- Direct observation of rotating black hole
- Excitation of atom

Optical Tweezers (OAM to micro particles)

Independent OAM and SAM

A. T. ONeil et al., PRL 88 (2002) 053601.

Why Bother with Gamma Vortex Beams?

The **proton spin crisis** (sometimes called the "proton spin puzzle") is a theoretical crisis precipitated by an experiment in **1987**^[1] which tried to determine the spin configuration of the proton. The experiment was carried out by the European Muon Collaboration (EMC).^[2]

Physicists expected that the <u>quarks</u> carry all the proton <u>spin</u>. However, not only was the total proton spin carried by quarks far smaller than 100%, these results were consistent with almost zero $(4-24\%^{[3]})$ proton spin being carried by quarks. This surprising and puzzling result was termed the "proton spin crisis".^[4] The problem is considered one of the important <u>unsolved problems</u> in physics.^[5]

from Wikipedia

Gamma Vortex Beams May Bring Hope

- The lack of more effective tools to probe the OAM contribution of quarks and gluons to nucleon's spin has kept us from completely resolving the "proton spin puzzle".
- Even with JLab 12GeV/EIC physics program, it is still a challenge to understand the hadron spin, such a fundamental emerging phenomenon of QCD dynamics, without a firm determination of the OAM contribution of quarks and gluons.
- High energy and high luminosity photon vortex beams carrying quantized OAM maybe sensitive in measuring the transverse motion of the hadron's constituents, and potentially a very effective probe into the proton substructure, providing us with an additional capability to explore the partons' OAM and to find the answer to the long-standing and mysterious "spin-puzzle".

Gamma Vortex Beams May Bring Surprise

- The lack of more effective tools to probe the OAM contribution of quarks and gluons to nucleon's spin has kept us from completely resolving the "proton spin puzzle".
- Even with JLab 12GeV/EIC physics program, it is still a challenge to understand the hadron spin, such a fundamental emerging phenomenon of QCD dynamics, without a firm determination of the OAM contribution of quarks and gluons.
- High energy and high luminosity photon vortex beams carrying quantized OAM maybe sensitive in measuring the transverse motion of the hadron's constituents, and potentially a very effective probe into the proton substructure, providing us with an additional capability to explore the partons' OAM and to find the answer to the long-standing and mysterious "spin-puzzle".

Gamma Vortex Beams May Bring A Big-PRIZE

- The lack of more effective tools to probe the OAM contribution of quarks and gluons to nucleon's spin has kept us from completely resolving the "proton spin puzzle".
- Even with JLab 12GeV/EIC physics program, it is still a challenge to understand the hadron spin, such a fundamental emerging phenomenon of QCD dynamics, without a firm determination of the OAM contribution of quarks and gluons.
- High energy and high luminosity photon vortex beams carrying quantized OAM maybe sensitive in measuring the transverse motion of the hadron's constituents, and potentially a very effective probe into the proton substructure, providing us with an additional capability to explore the partons' OAM and to find the answer to the long-standing and mysterious "spin-puzzle".

Potential Applications in NP

Insight into the proton

I. P. Ivanov, Phys. Rev. D 83 (2011)

If the OAM of gamma ray is transferred to the quark/gluon, it becomes novel probe of the proton spin.

High angular momentum excited baryons?

Nuclear

Y. Taira et al., arXiv 1608 (2016)

Excited states can be populated by high order transition. Photon-induced reaction cross section will change.

Generation of positron vortex via pair

As a new particle source for high energy physics.

MeV~GeV Vortex Beams

 Vortex γ-rays can be generated by Compton Scattering (LC): either *Linear LCS* or *Nonlinear LC*.

- Two imperative elements
 - High energy electron beams
 - High power vortex laser (>1k W) needed

✓ Low power vortex laser with external enhancement cavity

And above all: funding

Possible Approach twd. Gamma Vortex Beams at JLAB

 LCS by a high energy relativistic electron beam & a laser beam

Possible Experimental Locations

Accelerator - eBeams

Vortex Photon Flux

Estimate from JLAB Facilities

Facility	CEBAF		LERF		
Gamma-ray					
Maximum energy	360 keV	3.6 GeV	360 keV	LG laser	
Number of photons*	10 ⁶ (/sec/0.1mA/2kW)		10 ⁸ (/sec/1mA/2kW)	OAM Power	3 2,000 W
Electron				Energy	2.33 eV (532 nm)
Energy	100 MeV	12 GeV	100 MeV	Cavity length	0.85 m
Current	0.1 mA	0.07 mA	1.0 mA	Transver se size	0.09 mm
Transverse size (rms)	0.1 mm		0.5 mm	(rms) Pulse width (rms)	10 ps
Bunch length (rms)	43 fs		2 ps		
Repetition rate	499 MHz		75 MHz	Crossing angle	23.5 mrad
Repetition rate	499 MHz		75 MHz		

Vortex Beams by LCS

Spatial property

Calculated spatial distributions of radiation power of ICS gamma-rays when m/(k'x) is (a) 20 and (b) 0.02, respectively (m: OAM of the incident photon, k' = $2\gamma k$)

Vortex Photon Flux

Dependent on both beam size & OAM (TC)

Calculated number of photons vs. the transverse size of an electron beam (σ_e), for each OAM value (*m*), of a LG laser. The waist size of the laser is w = 0.17 mm.

OAM Characterization: Another Challenge

A. G. Peele et al., Opt. Lett. 27 (2002)

S. ZHANG, ERL Workshop, June, 2017, CERN

1752.

LCS Vortex Characterization

How to measure Hard X-ray/Gamma OAM?

(a) Calculated interference pattern between a 10 keV X-ray vortex carrying $m = 3\hbar$ OAM and a diffracted X-ray from a metal wire. (b) Calculated diffraction pattern from a triangle aperture of a 10 keV X-ray vortex carrying $m = 3\hbar$ OAM.

Explore New Characterization Method

- Diffraction properties of optical vortex beam through various apertures have been actively investigated to measure OAM(TC)
- For the first time, demonstrated that off-axis diffraction of the LG beam through a simple circular aperture can be used to determine both the magnitude and the sign of the TC.

Optics Letters, Vol. 42,, <u>Issue 7</u>, pp. 1373 (2017)

OAM Laser Study

Preservation of Vortex in an Enhancement Cavity

(a) Profile of a LG beam (m=1) after passing through two cavity mirrors and being amplified. (b) Interference pattern between a plane wave reference beam and the amplified LG beam (m=1) through two cavity mirrors.

Summary

- Reviewed existing LCSs
- Explored basic properties of vortex beams and applications to new frontier physics
- Identified an unique opportunity at JLAB for X-ray and Gamma-ray vortex beam research
- Reported our recent effort on high power vortex laser and characterization

Acknowledgement: We'd like to thank S. Benson, C. Tennant, T. Satogata, and M. Tiefenback for very helpful discussions.

Your kind attention:

We have been encouraged to consider a workshop on the subjects about

X-/Gamma-ray Vortex beams and their applications to frontier sciences including nuclear/high energy physics.

You are welcome to show ideas and help!

