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World-wide ERLs

Courtesy C. T.
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Applications of ERLs
• High Power Photon Beams

High average power FELs, tunable, covering EUV~THz

• Nuclear Physics: DarkLight
• High Current Accelerator Science & Technology

Electron Cooling/ next generation colliders (JLEIC)

• Isotope Production
• Laser Compton sources: x-rays/Gamma-rays
• UED, LWFA,…

Benefit to many: JELIC, eRHIC, Perle, LHeC,…...
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World-wide Effort on LCS (back in 2013)
• LEPS@Spring8	(Japan), operation	&	User	Program

8GeV	Storage	Ring/UV	laser,	2GeV/106 ph./s.
• HIGS@Duke (US), operation	&	User	Program

0.24~1.2GeV	Storage	Ring/FEL	NIR~UV,	1~100MeV/1010 ph./s.
• LBSF@M4,	MAX-IV	Lab,	(Sweden),	proposal

1.5GeV	Storage	Ring/299,244nm	Laser,	100~170MeV/4x106	ph./s.

For more refer to Y. WU, talk at IPAC12.

• AIST	(Japan),	operation	&	development
40MeV	Linac/TW	800nm	Ti:S,	10~40keV/5x106 ph./s.

• Lyncean Tech.	(US),	commercial	product
40MeV	Storage	Ring/FP	cavity	Laser,	7~35keV/1011 ph./s.

• ThomX,	(France),	under	construction
50~70MeV	Storage	Ring/FP	cavity,	7~35keV/1011~13 ph./s.

And	many:		KEK	(Japan),	LLNL	(US),	MIT(US),	ELI-NP	(EU),	
SSRS	(China),…
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Huge interests in Light Sources

Gamma ray
10−12

Atomic Nucl

1020

Radiation Type
Wavelength (m)

Approximate Scale
of Wavelength

ei

Frequency (Hz)

Gamma-
ray

Radio                  Microwave         Infrared        Visible      Ultraviolet     X-ray
103                                   10−2                         10−5              0.5×10 −6              10−8               10−10

Buildings    Humans     Butterflies  Needle Point Protozoans   Molecules      Atoms

10 4                           10 8                                 1012                                 1015              1016                1018

In particular hard X-/Gamma-rays
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HIGGS

Courtesy Y. Wu
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Other Applications

LLNL

§ Accelerators
Polarized positron generation 
E-beam diagnostics 

§ National Security
Non-destructive nucl. materials detection

§ Medical
Medicine, Isotope production, Cancer 

diagnostics 
§ Industriy

Nucl. waste treatment, product inspection 
§ Materials Research

Novel scintillators/detectors 
§ etc.
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A Bit of Background
Topics for Compact Light Sources (2010 BES Workshop) 

To develop: 
§ IR laser systems: kW avg power, fs pulses, kHz rep rates 
§ Laser storage cavities: 10-mJ, ps&fs pulses focused to um beam sizes 
§ High-brightness, high rep rate electron sources
§ CW 4K superconducting RF linacs

Other Topics Specific to Compton Sources 
§ Laser cavities tailored for specific Compton sources in terms of power, 

rep rate, beam size, polarization, and collision geometry (two-mirror & 
multi-mirror ring resonators, non-Gaussian mode cavities) 

§ Storage ring Compton sources: 
§ Optimizing final focusing design and mitigate its impact on beam 

dynamics 
§ General impact on beam dynamics at very high intensities 

§ Gamma-ray sources: Energy recovery consideration
See “Report of BES Workshop on Compact Light Source”, W. Barletta, M.Borland, May 2010
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An ERL with LCS
KEK cERL

R. Nagai, IPAC-2015, TUPJE002
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Proposed LCS Sources

Oxford	Design:	AERL
CBETA Application
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JLAB ERL

Wavelength 
(μm)

Power 
(kW) 

6  10.6 
2.8 7.2 
1.6 14.3 
1.0 2.2 
THz ~kW

ERL:10mA/75MHz/150fs/130MeV

JLAB LERF (formally FEL)

FEL (sub-100fs ~  ps)
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A Facility for NP Research
DarkLight: Aperture Test For Internal Target

§ Sustained 8-hr high current beam 
transmission through a 2 mm aperture 
§ Beam size: 50 um (rms)
§ Beam loss: a few ppm 
§ Nearly 0.5 MW CW beam power
§ Surpassed the users’ initial expectation
§ Demonstrated JLAB ERL unique 
capability

PRL. 111, 164801 (2013) 
NIM. A729 223 (2013)
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JLAB	FEL	Photon	Source	Spectral	Characteristic

JLab THz JLab FEL

Table-top sub-ps 
lasers

ERL-based High-power 
FEL

PRL 84, 662 (2000).

High-power THz at JLAB
Nature 420, 153 (2002).
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Laser	Compton	Scattering

(α~0, head-on collision)

Back-scattering α~0°,θ~0°,

Eγ~4γ2El

Eγ~2γ2El

Crossed-angle α~90°,θ~0°,

El: initial photon energy
Ee: e-beam energy
Eγ: scattered photon energy
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More	About	Compton	Scattering
Assuming Gaussian beams, in linear interaction regime,

Nl: # of initial photon
Ne : # of e-beam energy
Nγ: scattered photon flux
γ : e-beam energy
ζ: efficiency factor
F: rep rate,
εe: normalized e-beam emittance 
σe: e-beam size
σl: laser beam size
σt: CS cross section

head-on collision with matched beams,

Brightness (ph. /A s Ω 0.1%BW)

total scattered photons

Ref: J. Yang, NIMA 428 (1999). W.J. Brown,, PRST 7 (2004). 
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What	Can	Be	Expected	From	JLAB	FEL

FEL

LCS
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LCS Exp. at JLAB IR FEL DEMO (2000)

1/γ

det. position along z-axis (relative)

f B( )

crystal

300 fsec x-ray bunch

Measured 5.12 keV X-ray 
Spectrum (Tunable from 
3.5 to 18keV)

J. Boyce et, al, IPAC’03
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Laser Polarimeter
§ Hall	A	Compton	Polarimeter,	1~5kW/532nm
§ Cavity	power	enhancement:	up	to	5000
§ Much	more	efficient	with	ps laser

Optical Schematic of HALL A Compton Scattering Laser System
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Vortex Beams: Helical wave front
Wave front Phase

Forming a helical
wave front.
E∝ exp(i!φ )

Carrying orbital angular 
momentum (OAM)

ℓħ

Total AM
= OAM + SAM
= ℓħ + ħ

M. Padgett et al., Phys. Today57 (2004) 35.

9

! :Topological Charge (TC)
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Poyntingvector of Laguerre-Gaussian mode

Spiral Poynting vector leads to Obital Angular Momentum (OAM)

z

11

Vortex Beam Porpagation

Electric and magnetic field is slightly against the z-axis
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Generation	of	Vortex	&	OAM	
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About	Vortex	&	OAM
Journal papers 
§ Phys. Today 57 (2004) 35.
§ Nat. Phys. 3 (2007) 305.
§ Laser & Photon. Rev. 2 (2008) 299. 
§ Adv. Opt. Phot., 3 (2011) 161. 

Books
§ L. Allen et al., “Optical Angular Momentum” IOP 

publishing, 2003.
§ A. Bekshaev et al., “Paraxial Light Beams with 

Angular Momentum” Nova Science Publishers, 
2008.

§ D.L. Andrews, “Structured Light and its 
Applications” Academic Press, 2008. 

§ J. P. Torres, “Twisted Photons” Wiley-VCH, 2011.
§ D.L. Andrews, “The Angular Momentum of Light” 

Cambridge University Press, 2013. 
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Application	with	Vortex	Beams

Demonstrated
§ OAM transfer to micro particle 
§ Quantum entanglement
§ Creation of metal nano needle 
§ Terabit data transmission 

Proposed
§ X-ray dichroism
§ Magnetic mapping using electron 

vortex 
§ Direct observation of rotating black 

hole 
§ Excitation of atom 

Optical Tweezers 
(OAM to micro particles)
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Why	Bother	with	Gamma	Vortex Beams?

The proton spin crisis (sometimes called the "proton spin
puzzle") is a theoretical crisis precipitated by an experiment in
1987[1] which tried to determine the spin configuration of
the proton. The experiment was carried out by the European
Muon Collaboration (EMC).[2]

Physicists expected that the quarks carry all the proton spin.
However, not only was the total proton spin carried by quarks far
smaller than 100%, these results were consistent with almost zero
(4–24%[3]) proton spin being carried by quarks. This surprising
and puzzling result was termed the "proton spin crisis".[4] The
problem is considered one of the important unsolved problems
in physics.[5]

from Wikipedia
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Gamma	Vortex Beams	May	Bring	Hope

§ The lack of more effective tools to probe the OAM contribution of
quarks and gluons to nucleon's spin has kept us from completely
resolving the “proton spin puzzle”.

§ Even with JLab 12GeV/EIC physics program, it is still a
challenge to understand the hadron spin, such a fundamental
emerging phenomenon of QCD dynamics, without a firm
determination of the OAM contribution of quarks and gluons.

§ High energy and high luminosity photon vortex beams carrying
quantized OAM maybe sensitive in measuring the transverse
motion of the hadron’s constituents, and potentially a very
effective probe into the proton substructure, providing us with an
additional capability to explore the partons’ OAM and to find the
answer to the long-standing and mysterious “spin-puzzle”.
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Gamma	Vortex Beams	May	Bring	Surprise

§ The lack of more effective tools to probe the OAM contribution of
quarks and gluons to nucleon's spin has kept us from completely
resolving the “proton spin puzzle”.

§ Even with JLab 12GeV/EIC physics program, it is still a
challenge to understand the hadron spin, such a fundamental
emerging phenomenon of QCD dynamics, without a firm
determination of the OAM contribution of quarks and gluons.

§ High energy and high luminosity photon vortex beams carrying
quantized OAM maybe sensitive in measuring the transverse
motion of the hadron’s constituents, and potentially a very
effective probe into the proton substructure, providing us with an
additional capability to explore the partons’ OAM and to find the
answer to the long-standing and mysterious “spin-puzzle”.
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Gamma	Vortex Beams	May	Bring	A	Big-PRIZE

§ The lack of more effective tools to probe the OAM contribution of
quarks and gluons to nucleon's spin has kept us from completely
resolving the “proton spin puzzle”.

§ Even with JLab 12GeV/EIC physics program, it is still a
challenge to understand the hadron spin, such a fundamental
emerging phenomenon of QCD dynamics, without a firm
determination of the OAM contribution of quarks and gluons.

§ High energy and high luminosity photon vortex beams carrying
quantized OAM maybe sensitive in measuring the transverse
motion of the hadron’s constituents, and potentially a very
effective probe into the proton substructure, providing us with an
additional capability to explore the partons’ OAM and to find the
answer to the long-standing and mysterious “spin-puzzle”.
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Potential	Applications	in	NP	

Insight into the proton
structure

I. P. Ivanov, Phys. Rev. D 83 (2011)
093001.

If the OAM of gamma ray is transferred
to the quark/gluon, it becomes novel
probe of the proton spin.

u
Gamma ray
vortex

u
d

Nuclear
physics

Y. Taira et al., arXiv 1608 (2016)
04894.

Excited states can be populated by high order transition.
Photon-induced reaction cross section will change.

Generation of positron vortex via pair
production
As a new particle source for high energy physics.

33

High angular momentum excited baryons?
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MeV~GeV Vortex	Beams
§ Vortex	γ-rays	can	be	generated	by	Compton	Scattering	
(LC):	either	Linear	LCS	or	Nonlinear	LC.

§ Two	imperative	elements	
• High	energy	electron	beams
• High	power	vortex	laser	(>1k	W)	needed

üLow	power	vortex	laser	with	external	enhancement	cavity
• And	above	all:	funding
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Possible	Approach	twd.	Gamma	Vortex	Beams	at	JLAB

§ LCS by a high energy relativistic electron beam & a laser 
beam

12GeV 
CEBAF

LERF
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Possible	Experimental	Locations
§ Accelerator	- eBeams
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Vortex	Photon	Flux
§ Estimate from JLAB Facilities

Facility CEBAF LERF
Gamma-ray

Maximum 
energy 360 keV 3.6 GeV 360 keV

Number of 
photons* 106 (/sec/0.1mA/2kW) 108 (/sec/1mA/2kW)

Electron

Energy 100 MeV 12 GeV 100 MeV

Current 0.1 mA 0.07 mA 1.0 mA
Transverse size 

(rms) 0.1 mm 0.5 mm

Bunch length 
(rms) 43 fs 2 ps

Repetition rate 499 MHz 75 MHz

Repetition rate 499 MHz 75 MHz

LG laser
OAM 3
Power 2,000 W
Energy 2.33 eV (532 nm)
Cavity 
length 0.85 m

Transver
se size 
(rms)

0.09 mm

Pulse 
width 
(rms)

10 ps

Crossing 
angle 23.5 mrad
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Vortex	Beams	by	LCS
§ Spatial property

Calculated spatial distributions of radiation power of 
ICS gamma-rays when m/(k’x) is (a) 20 and (b) 0.02, 
respectively (m: OAM of the incident photon, k’ = 2γk) 
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Vortex	Photon	Flux
§ Dependent on both beam size & OAM (TC)

Calculated number of photons vs. the transverse size 
of an electron beam (σe), for each OAM value (m), of 
a LG laser. The waist size of the laser is w = 0.17 mm.
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Detecto
rMetal wire φ7 µm

X-ray vortex (9kkeV)
Synchrotron
light

Spiral phase plate (step: 34
µm)

For
k Wir

e

A. G. Peele et al., Opt. Lett. 27 (2002)
1752.

27

Interference pattern
between
X-ray vortex and diffracted
X-ray from a metal wire

Electron storage ring

OAM	Characterization:	Another	Challenge
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LCS	Vortex	Characterization
§ How to measure Hard X-ray/Gamma OAM?

(a) Calculated interference pattern between a 10 keV X-ray 
vortex carrying m = 3ħ OAM and a diffracted X-ray from a 
metal wire. (b) Calculated diffraction pattern from a triangle 
aperture of a 10 keV X-ray vortex carrying m = 3ħ OAM. 
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Explore	New	Characterization	Method

§ Diffraction	properties	
of	optical	vortex	
beam	through	various	
apertures	have	been	
actively	investigated	
to	measure	OAM(TC)	

§ For	the	first	time,	
demonstrated	that	
off-axis	diffraction	of	
the	LG	beam	through	
a	simple	circular	
aperture	can	be	used	
to	determine	both	
the	magnitude	and	
the	sign	of	the	TC.	 Optics Letters, Vol. 42,, Issue 7, pp. 1373 (2017)
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OAM	Laser	Study
§ Preservation of Vortex in an Enhancement Cavity

(a) Profile of a LG beam (m=1) after passing through two cavity mirrors and 
being amplified. (b) Interference pattern between a plane wave reference 
beam and the amplified LG beam (m=1) through two cavity mirrors. 
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Summary

§ Reviewed existing LCSs 
§ Explored basic properties of vortex beams and 

applications to new frontier physics
§ Identified an unique opportunity at JLAB for X-ray and 

Gamma-ray vortex beam research
§ Reported our recent effort on high power vortex laser 

and characterization

Acknowledgement: We’d like to thank S. Benson, C. Tennant, 
T. Satogata, and M. Tiefenback for very helpful discussions.
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We have been encouraged to consider a  
workshop on the subjects about 

X-/Gamma-ray Vortex beams and their 
applications to frontier sciences including 
nuclear/high energy physics. 

You are welcome to show ideas and help!

Your kind attention:


