Laser Compton Sources Based On Energy Recovery Linacs

Ryoichi Hajima

Japan Atomic Energy Agency
June 10, 2015
ERL-2015 WS

Laser Compton Scattering (LCS)

for example: $E_e = 35 \text{ MeV}$, $E_L = 1.2 \text{ eV}$

for head-on collision

$$E_X \simeq \frac{4\gamma^2 E_L}{1 + (\gamma \theta)^2 + 4\gamma E_L/(mc^2)}$$

- ✓ Pencil like beam
- ✓ Energy Tunable & quasi-monochromatic
- ✓ Polarized (linear and circular)

Nondestructive Detection & Measurement of Nuclear Material

Detection of SNM in a cargo

SNM: special nuclear material

Management of nuclear material

detection and assay of isotopes

- -- U, Pu, and Minor Actinides
- -- alpha emitter
- difficult to measure by passive assay

R. Hajima et al., J. Nucl. Sci. Tech. 45, 441 (2008) J. Pruet et al., J. App. Phys. 99, 123102 (2006)

Experimental Demonstration – nondestructive detection of isotope

Position and shape of the Pb block were clearly identified.

~ 10 hours @ AIST

Flux and Brightness of LCS sources

Flux : photons/s
$$F_{total} = \frac{16}{3} N_e N_L f \frac{r_0^2}{w_0^2} \qquad \text{electron classical radius}$$
 electrons collision spot size collision frequency laser photons

Spectral Brightness: photons/s/mm²/mrad²/0.1%BW

$$B \approx F_{total} \frac{\gamma^2}{\varepsilon_n^2} \times 0.1\%$$

for the higher brightness

- ➤ higher collision density
- higher repetition rate
- >smaller emittance

Proposal of ERL-based LCS source

LCS γ-ray for Fukushima

Two Measurement Methods

Demonstration for Debris in a TMI-2 container

Experiment at Duke/HI γ S (LCS γ facility)

(TMI: Three Mile Island)

No Absorber Witness plate:

Al witness target chosen as it has strong resonance at similar energies to ²³⁹Pu

No change expected!

Since witness target is AI, no absorption expected from simulant container

Loaded TMI-2 Container

Signal decrease expected

Using Al absorber can verify that experiment was done correctly.

Demonstration for Debris in a TMI-2 container

Verified NRF transmission feasible for TMI-2 container!

Small difference with concrete and container verified – concrete has small amount of Al

Large difference with Al absorber verified

Absorber	Expected	Measured
Concrete	0.96±0.01	0.95±0.02
Container	0.96±0.01	0.97±0.03
Al	0.66±0.01	0.65±0.02

C.T. Angell et al., Nucl. Instr. Meth. B 347, 11 (2015)

Analytical study shows
3.7h – 22h measurement for ²³⁹Pu
in melted fuel with 3% accuracy
by using a future ERL-LCS

C.T. Angell et al., to be published

Detection of decay branch in NRF

gamma-ray bandwidth

existing LCS : $\Delta E/E \sim 3-5\%$

future ERL : Δ E/E < 0.5%

decay branch can separate NRF from elastic scattering

T. Shizuma et al., Nucl. Instr. Meth. A 737, 170 (2014)

LCS Experiment at Compact ERL

Demonstration of technologies relevant to future ERL-based LCS sources

Work supported by:

A government (MEXT) subsidy for strengthening nuclear security (R. Hajima, JAEA), and Photon and Quantum Basic Research Coordinated Development Program from the MEXT (N. Terunuma, KEK)

Laser Enhancement Cavity

Developed by T. Akagi (KEK)

T. Akagi et al., Proc. IPAC-2014, p.2072 A. Kosuge et al., Proc. IPAC-2015, TUPWA-66

Can store two beams independently

Fast polarization switch at 325 MHz or

Double the laser power at LCS (Single laser for the first experiment)

waist size: σ =30 μ m

Beam Optics for the LCS

- Low-beta insertion for small beam sizes at IP
- Transport beams to the dump with small beam losses

Beam optics was established

IP: interaction point

Design optics (example: "70% middle" optics)

$$\sigma_{x}^{*}$$
 = 21 µm, σ_{y}^{*} = 33 µm at IP

Beam sizes at IP were estimated from Q-scan data $\sigma_{\rm x}^* \sim 13~\mu{\rm m},~\sigma_{\rm v}^* \sim 25~\mu{\rm m}$ (example)

 σ_{x}^{*} , σ_{y}^{*} < (resolution of the screen monitor)

Bunch charge: 0.5 pC/bunch, Normalized emittances: $(\varepsilon_{nx}, \varepsilon_{nv})=(0.47, 0.39)$ mm·mrad

S. Sakanaka et al., Proc. IPAC-2015, TUBC1

X-ray Produced by LCS

Parameters of electron beams:

Energy [MeV]	20
Bunch charge [pC]	0.36
Bunch length [ps, rms]	2
Spot size [μ m, rms]	30
Emittance [mm mrad, rms]	0.4
Repetition Rate [MHz]	162.5
Beam current [μA]	58

Parameters of laser (enhanced by cavity):

Center wavelength [nm]	1064
Pulse energy [μ J]	64
Pulse length [ps, rms]	5.65
Spot size [μ m, rms]	30
Collision angle [deg]	18
Repetition rate [MHz]	162.5
Intracavity power [kW]	10

Results:

Photon energy = 6.9 keVDetector count rate = $1200 \text{ cps } @\phi 4.66 \text{mm (*)}$ Source flux = $4.3 \times 10^7 \text{ ph/s (**)}$

- (*) Detector collecting angle is 4.66mm/16.6m = 0.281 mrad
- (**) CAIN/EGS simulations with the detector count rate

X-ray imaging with a LCS beam

An X-ray image of a hornet taken with LCS-produced X-ray.

Detector: HyPix-3000 from RIGAKU. Detector was apart from the sample by approx. 2.5 m.

Comparison with a simulation

Flux consistent within a factor of 2.5

Bandwidth

detector resolution = 153eV@5.9keV (Fe-55)

Assuming quadratic nature for convolution of width, the energy width of the LCS photon beam is estimated to be

$$\sqrt{173^2 - 153^2} = 81 \text{ eV}$$

We consider the detector resolution is not enough. We plant to make another experiment with a crystal monochromator.

Summary

- ERL is an ideal driver for laser Compton sources.
 - small emittance & high-average current
- Application of LCS γ -ray to nondestructive detection and measurement of nuclear material is under proposal.
 - high flux and narrow bandwidth
- Phase contrast imaging with LCS X-ray is also an attractive application.
 - round beam from a small-size source
- Generation of LCS X-ray has been demonstrated at cERL.
 - Source flux 4x10⁷ ph/s with 58 μA electron & 10 kW laser beams
 - Can be scaled to 10¹⁰ ph/s for 10 mA electron beam
- Efforts continue at cERL towards the higher flux of LCS.