

Institute of High Energy Physics Chinese Academy of Sciences

relillon noviteos novinele relunit

The Fabrication and Measurements of the Dual Aperture Quadrupole for CEPC

Mei Yang, Fusan Chen Sept 14, 2022

65th ICFA Advanced Beam Dynamics Workshop on High Luminosity Circular e+e- Colliders (eeFACT2022) Sep. 12-15, 2022, INFN-LNF, Frascati, Italy

Outline

- Dual Aperture Quadrupole(DAQ) parameters and first prototype
- Preliminary field measurement results
- Optimization design
- Prototype modification and field measurement results
- Summary

- Basic parameters of DAQ(dual aperture quadrupole)
 - > Apertures: 76mm
 - Beam separation: 350mm
 - Gradient range: 3.2T/m@45.5GeV~12.8T/m@182.5GeV
 - Trim coil: ±1.5% gradient tapering
 - ➢ Field quality: 5×10⁻⁴@Rref=12.2mm
- First F/D prototype features
 - DT4 compensation sheet
 - > Trim coils located on the yoke, far from the midplane.
 - Hollow water cooled aluminum conductor.
 - Large leakage field at the outside and middle of the magnet.
 - Strong dipole field at the end.
 - With lead blocks for radiation shielding

CDR,2018

First F/D design

- The first prototype is a laminated one with DT4 compensate sheet in the middle.
- Complex mechanical structure:
 - > The iron is divided into many blocks.
 - \succ The poles are slender.
 - \succ Difficult to control the tolerance.

- The first 1m long prototype was fabricated and tested by Hall.
 - Large edge field;

B(Gs)-190A-AL — B(Gs)-224A-AL — B(Gs)-234A-AL

- ➢ GL difference in two apertures: less than 0.5% (except 80GeV)
- X0 center shift with energy;

- Problems with the first design
 - > One DT4 sheet only can only work at one situation.
 - > The DAQ magnet should work at four different energy cases and with trim coils.
 - > The harmonics of b1 and b3 vary large at different field levels and with trim coils.

Prototype on the hall measurement beach

X0 shift with energy

Alternative design schemes

- Two separate irons with common coils
 - Mechanical depart;
 - No X center shift with energy shift
 - Large and constant b1 and b3, and can compensate by iron shim;
 - \succ Trim coils on the yoke, far away from the midplane.
- Parallel iron with 8 main coils
 - Large power supply
 - > Nearly no cross talk effect between two apertures.

Separate irons, no DT4 compensation sheet 2020 CEPC DAY

8 main coils, F/F design 2021 IAS

Optimization of the design

With center shim, make the flux distribution symmetrical in a single aperture.

- ➢ @120GeV: b1 and b3 reduced a lot.
- No obvious shift at different energies.
- \succ Trim coils on the poles.
- Strong cross talk between the two apertures.

E=120GeV	ori	gin	center shim	
n	Bn/B2-L	Bn/B2-R	Bn/B2-L	Bn/B2-R
1	1557.30	-1557.27	-13.51	13.53
2	10000	10000	10000	10000
3	126.14	-126.18	-1.11	1.06
4	0.52	0.52	0.51	0.53
5	1.70	-1.71	-0.02	0.01
6	-0.04	-0.03	-0.04	-0.03
B1(T)	-0.01622	-0.0162197	0.00014	0.00014
B2(T)	-0.1041546	0.1041547	-0.10411	0.10411
B3(T)	-1.31E-03	-0.0013143	0.00001	0.00001
G(T/m)	-8.537	8.537	-8.534	8.534
S(T/m2)	-17.654	-17.660	0.155	0.149

Optimization of the design

With trim coils in 3D simulation

Little b1 & b3 variations in the energy range

Trimcoil	45GeV		120GeV		182.5GeV		change
	AP_L	AP_R	AP_L	AP_R	AP_L	AP_R	
G(T/m)	-3.18	3.28	-8.39	8.64	-12.68	13.05	
b3	9.63	-9.53	9.64	-9.72	10.52	-11.58	-2.05
b4	0.53	0.41	0.54	0.42	0.56	0.43	
b5	0.11	-0.12	0.11	-0.12	0.12	-0.14	
b6	-0.34	-0.31	-0.35	-0.31	-0.36	-0.33	
x0(mm)	0.2937	-0.2834	0.2936	-0.2807	0.2841	-0.2560	0.0274
Beam sep		-0.5770		-0.5743		-0.5401	0.0369

DAQ simulation shows that the F/D scheme can meet the requirement.

Modified DAQ-1m prototype

- Im long prototype modification
 - > DT4 iron in the middle instead the sheet and stainless steel.

- Magnet assembly errors (tolerance:±0.05mm)
 - > Complex structure: laminated, with trim coils and shared main coils
 - > Large magnet blocks, long iron length, slender poles.
 - > The final assembly is out of tolerance.

- Field measurements with rotating coil measurement system
 - > Aperture A: F polarity
 - > Aperture B: D polarity

<mark>Aperture A</mark>

- RCS results—Integral transfer function
 - ➢ GL difference in two apertures : <0.2%</p>
 - Similar transfer function in two apertures.
 - \succ The efficiency is about 97.8%, not saturated.

E(GeV)	Ireal(A)	PHI2_A	PHI2_B	BL_A/BL_B-1
45.5	57.99286	0.02407	0.024025	0.19%
80	101.9951	0.042234	0.042161	0.17%
120	153.9915	0.063491	0.063409	0.13%
182.5	233.9919	0.094249	0.094182	0.07%

Harmonics:

- > Higher harmonics: less than 3 units, except sextupole component.
- Possible reasons:
 - Large mechanical assemble errors;
 - Iron deformation;
 - Cross talk effect is not compensated completely.
- > Possible solutions:
 - Adjust the compensate blocks.
 - Magic finger to adjust the field.

Shift of magnetic center with energy

X0_A varies 0.056mm, X0_B varies 0.105mm
Possible reason: incomplete compensation;
iron properties different.

> Y0_A varies 0.04mm

Possible reason: Busbars' location.

E(GeV)	Ireal(A)	X0_A(mm)	Y0_A(mm)	X0_B(mm)	Y0_B(mm)
45.5	57.99286	0.514	0.174	-0.406	-0.078
80	101.9951	0.557	0.166	-0.472	-0.074
120	153.9915	0.571	0.157	-0.505	-0.069
182.5	233.9919	0.551	0.133	-0.511	-0.072
	max-min	0.056	0.040	0.105	0.009

Summary

- First prototype is a laminated one and composed by many blocks, whose strength and stiffness is weak. The design will be reviewed later, especially the mechanical design.
- After iron modification with center shim, X0 shifts is reduced by an order, which is agreed with the simulation results.
- New trim coils will add on the poles to taper the gradient in the two apertures.
- Further modification
 - > Adjust the gap height of the center shim, to compensate the cross talk effect.
 - \succ Add trim coils or use the correctors to adjust the x0 shift at different energies.

