

TOWARDS BEAM-BEAM SIMULATIONS FOR FCC-EE

P. Kicsiny, X. Buffat, D. Schulte, G. Iadarola, T. Pieloni, M. Seidel

Special thanks to: F. Carlier, M. Hofer, D. Shatilov, K. Oide, D. Zhou

65th ICFA Advanced Beam Dynamics Workshop on High Luminosity Circular e+e- Colliders (eeFACT2022) 14th September 2022

Overview

- 1. Introduction to FCC-ee
- 2. Beam-beam effects in FCC-ee
- 3. Overview of existing simulation tools for circular machines
- 4. Beam-beam models
- 5. First studies
- 6. Summary & next steps

1) Introduction to FCC-ee

FCC-ee

- The FCC-ee (Future Circular Collider): currently one of the most favored next colliders at CERN
- Study properties of standard model particles with unprecedented precision, up to 350 GeV
- A first stage towards a possible 100 TeV hadron collider (FCC-hh)

Layout

- Baseline with 2 IP
- 4 IP configuration under study
- Accelerator design aims to maximize luminosity and reduce beam-beam effects

Beam-beam effects in FCC-ee

• Nonlinear kick

FCC

- No complete theory, simulations have to be used
- Beamstrahlung:
 - Increases bunch length (σ_z) & energy spread (σ_δ)
 - Decreases luminosity & beam lifetime
- Proposed setup to increase luminosity [1]:
 - 1. Large Piwinski angle + crab waist scheme [2]
 - Small beam size, crossing angle, crab sextupoles
- 1. Top-up injection scheme: continuous injection of new bunches
 - Maintains luminosity levels & compensates for decreased beam lifetime

[1] <u>https://cds.cern.ch/record/2651299/files/CERN-ACC-2018-0057.pdf</u>
[2] <u>https://arxiv.org/pdf/1608.06150.pdf</u>

○ FCC

[1] G. ladarola https://indico.cern.ch/event/1066779/contributions/4485729/attachments/2301867/3915592/019 Xsuite.pdf [2] T. Pieloni https://indico.cern.ch/event/1066779/contributions/4485729/attachments/2301867/3915592/019 Xsuite.pdf [2] T. Pieloni https://indico.cern.ch/event/1064327/contributions/4893328/attachments/2454297/4206242/FCC%20Software%20framework%20developments.pdf

Beam-beam models

- ~10⁴-10⁷ particles per bunch
- Longitudinal slicing (simplecticity)
- Interaction of slice pairs
 - > Compute kick using slice moments (Σ)
 - Update dynamical variables

Beam-beam models

- ~10⁴-10⁷ particles per bunch
- Longitudinal slicing (simplecticity)
- Interaction of slice pairs
 - > Compute kick using slice moments (Σ)
 - Update dynamical variables

In xsuite:

- Core algorithm: single slice-slice interaction
- Flexible choice of model
- Force: soft-Gaussian kick by Bassetti-Erskine formula [1] (field solvers to be tested in future)
- Extendible: e.g. Beamstrahlung, Bhabha scattering

○ FCC

- Benchmark of computation time for beam-beam (strong-strong) + linear tracking against reference code COMBIp [1]
- Time per turn scales approximately with the number of longitudinal slices

1.0 0.8 0.6

- Multithreading: ~x5 speedup
- GPU acceleration is available in xsuite
 - To be tested
 - Will be needed for full scale simulations

[1] https://twiki.cern.ch/twiki/bin/view/ABPComputing/COMBI

Beamstrahlung benchmark

- Benchmark against reference code GUINEA-PIG [1]
 - FCC-ee flat beams
 - Crossing angle: 15e-3 [rad]
 - Beamstrahlung model OK
 - xsuite: weak-strong
 - GUINEA-PIG: strong-strong

5) First studies

- Possibility to generate photons for external use (collimation, MDI) [2]
- TODO: come up with an efficient model of Bhabha scattering

[1] https://twiki.cern.ch/twiki/bin/view/ABPComputing/Guinea-Pig

[2] https://xsuite.readthedocs.io/en/latest/internal_record.html#internal-record-for-elements-used-in-standalone-mode

Simplified tracking simulations with xsuite

- Exploit superperiodicity of machine (2 IP case)
- In code:
 - 1 IP + tracking over half arc with linear transfer matrix
 - Arc split into 3 segments
 - 2 crab sextupoles between arc segments
 - A «turn» begins in front of the right sextupole:
 - Observation point for emittances (by stat. definition from normalized coordinates)
 - Observation point for raw coordinates is before IP
 - Effective radiation (damping+noise) in arc, beamstrahlung in beam-beam

5) First studies

normalized to design report values (SR+BS)

Equilibrium bunch length

1.0 $\begin{array}{c} 8.0 \\ \alpha_z \left[\sigma_{z,\,eq} \right] \\ 0.0 \end{array}$ 0.8 Z (45.6 GeV) WW (80 GeV) ZH (120 GeV) TTBAR (175 GeV) 0.4 TTBAR (182.5 GeV) 2000 6000 8000 10000 0 4000 Turns [1]

- Weak-strong model (1e4 particles)
- Equilibrium bunch length agrees with design report value for all resonances

Crab waist & transverse blowup

- Weak-strong model
- Optimum k₂ close to nominal value (~0.97*k_{2,nom} for Z resonance)
- ~10% blowup of vertical beam size (stat. errors ~1%)
- Not observed in other codes
- Investigation in progress

Understanding transverse blowup & benchmarking

- FCCee Z tune footprint
- Differences to be understood

[1] Courtesy of D. Shatilov

Strong-strong simulations

- Fast blowup in x and y size (not observed in other codes)
- Coherent beam-beam instability? [1]
- Investigation in progress

Summary

Work so far: xsuite code development & benchmarks for FCC-ee

- Flexible beam-beam models (weak-strong, quasi strong-strong, strong-strong)
- Beamstrahlung: photon generation available
- Weak-strong benchmarks (understaning vertical blowup, FMA benchmark)
- Strong-strong benchmarks (understnad blowup, reproduce coherent instability)

Work ongoing

- Bhabha scattering
- ➢ 3D flip-flop
- Top-up injection

Other xsuite features targeted

- Impact of lattice imperfections
- Interplay with real lattice model
- Multiple IPs
- Monochromation
- Wakefields

Thank you!

This work was performed under the auspices and with support from the Swiss Accelerator Research and Technology (CHART) program (<u>www.chart.ch</u>).