Fast luminosity monitor for FCC-ee based on the LEP experience

Antonio Di Domenico Dipartimento di Fisica, Sapienza Università di Roma e INFN sezione di Roma, Italy

65th ICFA Advanced Beam Dynamics Workshop on High Luminosity Circular e+e-Colliders (eeFACT2022), 13 September 2022, INFN-LNF

C FCC	-CC-ee Parameters		K. Oide, D.	Shatilov 10	
Parameter [4 IPs, 91.1 km,T _{rev} =0.3 ms]	Z	ww	H (ZH)	ttbar	
beam energy [GeV]	45	80	120	182.5	
beam current [mA]	1280	135	26.7	5.0	
number bunches/beam	10000	880	248	40	
bunch intensity [10 ¹¹]	2.43	2.91	2.04	2.37	
SR energy loss / turn [GeV]	0.0391	0.37	1.869	10.0	
total RF voltage 400 / 800 MHz [GV]	0.120 / 0	1.0 / 0	2.08 / 0	2.5 / 8.8	
long. damping time [turns]	1170	216	64.5	18.5	
horizontal beta* [m]	0.1	0.2	0.3	1	
vertical beta* [mm]	0.8	1	1	1.6	
horizontal geometric emittance [nm]	0.71	2.17	0.64	1.49	
vertical geom. emittance [pm]	1.42	4.34	1.29	2.98	
horizontal rms IP spot size [µm]	8	21	14	39	
vertical rms IP spot size [nm]	34	66	36	69	
beam-beam parameter ξ_x / ξ_y	0.004 / 0.159	0.011 / 0.111	0.0187 / 0.129	0.093 / 0.140	
rms bunch length with SR / BS [mm]	4.38 / <mark>14.5</mark>	3.55 / <mark>8.01</mark>	3.34 / <mark>6.0</mark>	1.95 / <mark>2.75</mark>	
luminosity per IP [10 ³⁴ cm ⁻² s ⁻¹]	182	19.4	7.26	1.25	
total integrated luminosity / year [ab ⁻¹ /yr]	87	9.3	3.5	0.65	
beam lifetime rad Bhabha + BS [min]	19	18	6	9	

From talk "Accelerator overview" by Tor Raubenheimer presented at FCC Week 2022

Luminosity measurement using single Bremsstrahlung

Luminosity and beam angular divergence have been measured at LEP with a fast monitor based on the single bremsstrahlung process $e^+e^- > e^+e^-\gamma$.

(ADONE: H.C.Dehne, M.Preger, S.Tazzari, G.Vignola NIM 116 (1974) 345 VEPP: Blinov et al. NIM A273(1988))

 $\sigma_{SB} \sim \ln s$

$$\vartheta \simeq \frac{m}{E} \simeq 10 \ \mu rad$$
 a LEP

	SPEAR	PETRA	LEP
Luminosity (cm ⁻² s ⁻¹)	1031	1030	10 ³¹
Beam energy (GeV)	2.6	8.5	55
Rate Bhabha evts.(Hz) 10<0<20 mrad	$3.5 \cdot 10^3$	30	6.5
Rate SB evts.(Hz) Eγ > 500 MeV	$6.7 \cdot 10^5$	$1.5 \cdot 10^5$	$3.3 \cdot 10^{6}$

~ 100 photons / bunch crossing O(100 GeV /bunch crossing)

Single Bremsstrahlung vs Bhabha scattering at FCCee

LEP-5 experiment (1987-1992)

Lead scintillating fiber calorimeter Spatial resolution ~ 1 mm @ 10-50 GeV

M. Bertino et al. NIM A315 (1992) 327

Experimental set-up in IP-1 (no other expts at that time)

W = thin AL window, $2 \times 5 \text{ cm}^2$

 $2 X_0$ of LiH (180 cm) in front of the calorimeter to absorb synchrotron radiation

Counting room near IP-1 \Rightarrow 420 m long cables

LEP-5 luminosity measurement: the method

High rate \Rightarrow multiphoton regime \Rightarrow measurement of integrated energy rather than photon counts

$$I = E_{\text{meas}} - E_{\text{bckg}} = AL \int_0^{E_{\text{beam}}} \epsilon(k) k \frac{\mathrm{d}\Sigma}{\mathrm{d}k} \, \mathrm{d}k$$

Dependence of I on the effective detection energy threshold

SB photons emitted in a very narrow cone

$$\vartheta \simeq \frac{m}{E} \simeq 10 \ \mu rad \ a \ LEP$$

- transverse size to be taken into account)
- \Rightarrow measurement of position and angular divergence of beams at IP.

Beam size effect

SR=synchrotron radiation

Table 3 Energy from the window (GeV / crossing)

Window	Beam-gas (BG)	SR	SB	SR /(SR+SB)	BG /(BG+SB)
2 x 5 cm ²	45	3 x 10 ⁶	40		53 %
7 x 5 cm ² SS-even	3	4 x 10 ⁶	170		1.8 %

Energy deposited in the calorimeter fibres after 2 R. L. of LiH absorber (GeV / crossing)

2 x 5 cm ²	6 x 10-3	0.5	1.2 %	
SS-1				
7 x 5 cm ²	2 x 10-2	2.2	0.9 %	
SS-even				

Beam gas bremss. and thermal photons measurement

Compton scattering of 50 GeV beam electrons on thermal photons

After scattering: 0.07 eV photon => up to 2.8 GeV photon

μ_{BG} = 0.44 ; μ_{TP} = 1.47 γ multiplicities ⇒ P ≈ 2.2 × 10⁻¹⁰ torr T ≈ 291 K [¬] C.Bini et al., PLB **262** (1991) 135

Single bremsstrahlung and background measurement

Separate beams for background measurement

- 1) Beam-gas Bremsstrahlung
- 2) Compton scattering of thermal photons

ADC gate = 1 μ s T_{LEP}= 22 μ s

3) Synchrotron radiation
Energy deposited in the calorimeter downstream
LiH absorber from MC: SR/SB <1%
at LEP nominal luminosity (IP even)

DAQ event rate before upgrade ~ 100 Hz ; after 45 kHz (see next slides)

Acceptance

Luminosity measurement

LEP-5 DAQ upgrade

Upgrade with a new fast processor able to reach the maximum intrinsic rate and to store information separately for the 4 bunches

Unstable beams for collisions in IP-1 \Rightarrow few data collected

Collisions only for 40 s

Collisions for 10 min

Luminosity measurement per bunch

C. Bini et al. NIM A349 (1994) 27

Beam centered outside the window => increased uncertainty on acceptance determination

SB luminosity monitor at FCCee: some considerations (I)

- A SB luminosity monitor can be very fast at FCCee.
- Beam size and low energy threshold (efficiency) control required for cross-section determination.
- Precision of theoretical cross section calculation <~1%.
 Beam size effect revised for e.g super B-factories, beam gaussian shape assumed Theory calculations could be further improved.
- Difficult to reach a precision of 10⁻³ ÷ 10⁻⁴ of the much slower Bhabha monitor (see Dam, EPJ Plus (2022) 137:81)
- In case of a photon exit window at 50 m from IP, the beam spot can be few mm: Pros: easier to get ~full acceptance, reduced systematic uncertainty Cons: difficult to measure beam divergence and position at IP, mm space resolution needed, e.m. shower transverse dimension
- Huge SB+background energy flux implies a very robust and radiation hard detector

SB luminosity monitor at FCCee: some considerations (II)

Background:

- beam gas bremsstrahlung ~ I²
 extrapolating from LEP (P~2x10⁻¹⁰ Torr) beam gas/SB < 10⁻⁴ => negligible
 Residual gas pressure at LEP IP-1 was exceptionally good (P~2 x 10⁻¹⁰ Torr)
 At FCCee at Z peak P ~ 1x10⁻⁹ Torr is expected
 => could worsen beam gas bremsstrahlung background
- Inverse Compton scattering of thermal photons extrapolating from LEP (Temp=291 K) ther.phot./SB < 10⁻⁴ => negligible
- Synchrothron radiation: absorber and collimator required => worsening of downstream detector performance => attenuation depends also on the detector characteristics => to be studied

SB luminosity monitor at FCCee: some considerations (III)

Background:

Beamstrahlung (negligible at LEP) has to be taken into account The huge energy flux must be attenuated (at Z peak Beamstrah./SB O(10³)). To be studied the compatibility of a SB luminosity monitor with a beam dump.

SB luminosity monitor at FCCee: some considerations (III)

Background:

 Beamstrahlung (negligible at LEP) has to be taken into account The huge energy flux must be attenuated (at Z peak Beamstrah./SB O(10³)). To be studied the compatibility of a SB luminosity monitor with a beam dump.

