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The P3 project
PSI Positron Production



Page 3

FCC-ee Injector Study
• Work package in FCC collaboration.

• Two deliverables included in FCC feasibility 
study:
- Design proposal for FCC-ee Injector.
- Proof-of-principle experiment for novel 

positron source (P3).

• Due to FCC-ee high current requirements
- Only target-based e+ production schemes 

considered.
- Vast production of e+, poor transport 

efficiency to DR
- Use of HTS solenoids for the AMD 

proposed for higher efficiency.

Schematic of FCC-ee Injecor Complex

• Target
• Adiabatic Matching Device
• 10 RF Cavities surrounded by 

solenoids
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The PSI Positron Production (P3) Experiment

Target and HTS Adiabatic 
Matching Device

6 GeV beam from 
SwissFEL linac

Solenoids Beam diagnostics

2 RF Cavities

Concept design of P3



• References for yield value:

• Main goal is to provide first experimental 
validation of such a yield.

• But a compact positron source at PSI can:
- Host further experiments/tests
- Contribute to other future positron 

machines
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Goals of P3

E

t

DR Acceptance window

1.54 GeV

𝑌𝑖𝑒𝑙𝑑 =
𝑁𝑒!𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑 𝑏𝑦 𝐷𝑅
𝑁𝑒"𝑝𝑟𝑖𝑚𝑎𝑟𝑦 𝑏𝑒𝑎𝑚

SuperKEKB Factory (State of 
the art, 3 GeV) [1]

0.5

FCC-ee requirements [2] 1 (plus safety factor 2)

P3 simulations 8

Impression of the a e+ beam at entrance of DR
and DR acceptance window

[1] K. Akai, K. Furukawa, and H. Koiso, "Superkekb collider", 2018.

[2] I. Chaikovska et al., "Positron source for FCC-ee", 2019.



• SwissFEL linac can provide high quality 6 GeV 
electron beam.

• Strict radiation limits do not allow for high bunch 
charges and rep. rates.

- beam dynamics insensitive of electron 
charge and time structure.

- thermomechanical study of the target 
excluded from P3.
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e+ Source at SwissFEL

SwissFEL facility
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II. Key Technology and Beam Dynamics

High temperature 
superconductor-based AMD
(12.7 T peak on-axis)

NC or SC solenoids
(0.4 to 1.5 T peak on-axis)

SW, S-band Cavities with 
large iris aperture 40 mm



• Baseline:
- High temperature SC based Adiabatic 

Matching Device (12.7 T)
- SC solenoids around cavities (1.5 T) or

NC solenoids around cavities (0.4 T).

• AMD matches the e+ beam into capture system. 
Part of the beam is lost and norm. transverse 
emittance decreases over first RF cells. 

• SC solenoids contain the matched beam. 
Capture efficiency and emittance stabilize.
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Solenoids: Beam Matching and Confinement

12.7 T
1.5 T
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HTS Adiabatic Matching Device
• HTS demonstrator built at PSI:

- 4 ReBCO tape coils at 2kA
- Operation at 18.2 T, on-axis 

peak
- Temperature 20 – 30 K, no need 

of He cooling
- No insulation, quench self-

protected

• Simulation study at CERN found no 
critical machine protection issues [1]

• Technical design of cryostat in 
development at PSI

HTS demonstrator at PSI (M. Duda et al.) Preliminary model of the AMD, 
including cryostat (H. Garcia Rodrigues)

[1] B. Humann et al., Radiation Load Studies for the FCC-ee Positron Source with a Superconducting Matching Device, 2022.
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Solenoids Around RF Cavities (I)
• Solenoids must create strong and flat magnetic channel.

• Mechanical constraints exist, separation must be provided for waveguides and installation

Waveguides

Assembly
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Solenoids Around RF Cavities (II)

41 %75 %

Extended simulations over 10 RF Cavities with optimized (left) and breached (right) magnetic channels. 
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Solenoids Around RF Cavities (III)

• Two baseline options for P-cubed:

- Superconducting
- NbTi
- 1.5 T on axis

- Normal Conducting
- Copper
- 0.4 T on axis

Solenoid strength around cavities [ T ]

25%

72%

0.3 T as NC 

reference point

1.5 T as SC 

reference point
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Solenoids Around RF Cavities (IV)

• Superconducting:
- Extremely high yield provided (8.0)

- Lower power consumption

- High cost (above tender call limit 
230 kCHF)

• Normal conducting:
- Lower yield (3.1), sufficient for FCC-

ee requirements 
- Extremely high power consumption 

(>100 kW), large amount of copper 
required

- Lower cost, conventional technology

Superconducting (NbTi, 1.5 T) Normal Conducting (Copper, 0.4 T)
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RF Cavities

z

E

+/- 3.8 %

λ

1.54 GeV

• Ideally:
- High capture efficiency
- Low energy spread
- Positrons in one bucket

Mechanical model of RF Cavities (R. Zennaro)

Impression of the a e+ beam at entrance of DR
and DR acceptance window
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Estimation of the Yield at DR

E

+/- 3.8 %

λ

1.54 GeV

P3

Φ1 Φ2

8 extra cavities

On-crest

Analytical transformation
in longitudinal plane. 

Transverse losses neglected

200 MeV

200 MeV

e+

e- discarded
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RF Working Points

Working point for Max. Yield at DR = 8.0 @ (Phi1 = -170, Phi2 = 0)
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RF Working Points (II)
Second bucket:
- Lower energy spread
- e+ concentrated in main 

bunch Deceleration over 
first RF cells
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RF Working Points

Yield at DR = 5.1 @ (Phi1 = -40, Phi2 = -100)
Points in this region provide high capture efficiency (>75%) but lower yield!
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RF Working Points (III)
First bucket:
- High energy spread

Many electrons 
in first bucket
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The p3 beam (I)

AMD max. 12.7 T

Solenoids max. 1.5 T

e+ capture efficiency 74 %

Energy Spread 92 MeV

Norm. emittance 15157 pi mm mrad
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The P3 Beam (II)

Yield at DR 8.0

AMD max. 12.7 T

Solenoids max. 1.5 T

@
20

0 
M

eV Capture efficiency 72 %

Energy Spread 66 MeV

Norm. emittance 14667 pi mm mrad

Longitudinal profile of e+ beam at DR entrance
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II. Beam Diagnostics

Broadband Pick-Ups

Charge detector

Spectrometer Faraday Cups



• BBPs measure time structure of the beam 
after second cavity.

• Broadband operation and high sampling
frequency (40 GHz) required to
differentiate e+ and e- bunches.

• Based on SuperKEKB factory diagnostic [1].
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Broadband Pick-Ups
e+
e-

4 Pick-Ups

Simulated signal at BBPs (E. Ismaili)

[1] T. Suwada et al., "First simultaneous detection of electron and positron bunches 
at the positron capture section of the SuperKEKB factory",   Sci. Rep., vol. 11, 2011.



• Measurement of e+ and e- charge
separately. 

• Alluminum FCs at 25 Ohm. Matching
to 50 Ohm through 2 parallel coax
cables

• Negligible electron backscattering
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Faraday Cups

B

e+

e-

● e+            ● e-

Optimized dimensions of diagnostics chamber.

e+e- beam at faraday cups
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Spectrometer and Charge Detector
• Dipole strength scanned to measure e+ 

energy profile
• e+ at different pz detected by narrow 

screen
• Technology of the detector t.b.d.! e+

B

Schematic of energy spectrum measurement

Pz spectrum reconstruction
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IV. Project Status

Mechanical design of P3 and RF network (A. Magazinik) Radioprotection studies (I. Besana)

Design of the extraction line and P3 bunker at SwissFEL (D. Hauenstein and M. Schaer)
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Timeline

SwissFEL Shutdowns

Preliminary timeline of the P3 experiment
(M. Schaer and D. Hauenstein)
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Status of Experiment Design

Target Concept design defined.

RF Structures Ready for copper purchase.

M
ag

ne
ts AMD HTS tape to be purchased shortly. Design of cryostat almost

complete.

Solenoids around RF 
structures NC and SC options presented. 

Be
am

di
ag

no
st

ic
s

Faraday Cups and 
diagnostics chamber Dimensions optimized. Backscattering simulations performed.

Broadband pick-ups Feedthroughs to be purchased and tested shortly. Optimization of
pickups in progress. 

Spectrometer Baseline design complete. Mechanical modification of existing
dipole in progress. 

Charge detector Technology under discussion.

§ Purchase phase

§ In progress

§ Concept design



• P3 is at advanced design stage and on-schedule. Final design 
expected for 2023 Q1.  

• Experiment to take place in 2025. Eventual delays might occur due 
to installation and integration issues. 

• Make the most of our compact positron source at PSI:
- A demonstrator for all future e+e- colliders and positron 

machines. 
- Possible host to further experiments and tests.

• Open to new ideas and collaborators!
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Final Remaks
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