Future projects for next generation Tau-charm Factories

Qing Luo

2022.09.12@eeFACT2022, remote

National Synchrotron Radiation Laboratory

University of Science and Technology of China

Outline

• What's a Super Tau Charm factory?

• Major challenges for super Tau Charm accelerators

• Super Charm Tau Factory at BINP

• Super Tau Charm Facility at USTC

• Conclusion

What's a Super Tau Charm?

- A e+e- collider with c.m. energy around 4 GeV
 - i.e. 2-7 GeV for Chinese STCF, 3-7 GeV for Russian SCTF
 - Achieve main luminosity goal at 4 GeV
 - > Dual Ring, one interaction point
 - A peak luminosity of 10³⁵cm⁻²s⁻¹, 100 times as scientists had achieved at BEPC II
 - > Do we need polarization?

• Large Piwinski Angle and Crab Waist (P. Raimondi 2006)

Luminosity
$$L = \frac{\gamma}{2er_e} \cdot \frac{I_{tot}\xi_y}{\beta_y^*} R_H$$

Large Piwinski angle: $\phi = \frac{\sigma_z}{\sigma_x} \tan\left(\frac{\theta}{2}\right)$

Transverse beam separation in parasitic IPs

- distance between bunches is not limited by beam-beam
- Interaction area length $L_i \ll \sigma_z$
- $\beta_y^* \approx L_i \ll \sigma_z$ no hour-glass CRAB waist (CRAB sextupoles) suppresses betatron and synchro-betatron resonances
 - $\xi_y \sim 0.2$ (Theoretically)

K. Hirata PRL 1995

Test of "Crab-Waist" Collisions at the DAΦNE Φ Factory, PRL 2010 Slide by courtesy of A. Bogomyagkov, Workshop on future Super c-tau factories 2021,

15-17 November

Major challenges for accelerators

• Accelerator design physics

- High current, small bunches at IP
 - Collective effects $\uparrow \uparrow$, Instability $\uparrow \uparrow$
- Focusing^{↑↑} -> Negative chromaticity^{↑↑} -> Chromatic correcting sextupoles
 - Chromatic correcting sextupoles + crab waist sextupoles, more non-linearity
- Smaller dynamic aperture and energy aperture
 - Also, much shorter Touschek lifetime (Bremsstrahlung is not decisive)
- Lower bending angle per dipole in arc cells
 - Strong focusing, lower emittance
 - Smaller maximum values of the dispersion function, provide adequate momentum acceptance -> not optimum for chromaticity correction but can use DLSR experience

• Key Technologies for Accelerators

- > Technologies for high peak luminosity: Interaction Region Misc.
 - Superconducting magnets for final focus
 - Correcting the focusing magnets leakage, cancelling the detector solenoid, etc.
 - Collimator, cryostat, chamber, etc.
- Fechnologies for high integrated luminosity: Beam instrumentations and so on
 - Monitoring beam parameters, suppressing the instabilities, optimizing collision, etc.
- Beam sources and injection
 - Electron and positron source with high current and high quality
 - Very low lifetime -> High current top-up injection, sufficient injection efficiency is needed
 - Low quality (especially emittance and bunch size) may result in perturbations and irradiations
 - On-axis injection may be required
 - Due to lower aperture

• Experience from SuperKEKB*

- Reach a high beam-beam parameter (tune shift) is essential, but difficult
 - 0.0881/0.0807 (design); 0.046/0.030 (June 2021)
- Current may be lower than expected
 - The measured threshold can be much lower than expected (i.e. limited by TMCI due to the impedance of narrow beam collimators
- Beam blow up significantly contribute to luminosity loss

*Courtesy of H. Sugimoto, Workshop on future Super c-tau factories 2021, 15-17 November

We can see that advanced beam instrumentations, feedback systems and carefully commissioning are required

Source of Optics Degradation - Example -

- We have a slow tune feedback system, which keep measured tune a constant by changing the model lattice tune.
- Discrepancy between the model and measured tunes gradually increased just after optics correction.
- We suspect of drifting of QCS magnetic field after its startup.
- QCS group plan to measure the time evolution of magnetic field with the R&D QC1P and QC1E magnets.

SCTF @ **BINP**

• Work started since 2008

Design and parameters inspired by Italian SuperB \succ Factory project

• 2011 CDR ver1.0

> With MDI, lattice optimization, high performance operation at all energies

SS3

• 2018 CDR ver2.0

- > Upgraded design and more technical details
- \bigcirc From 2019 to Now
 - Shorter ring, better dynamics
 - Snakes
 - Realistic design of MDI, lens and injection facility

• Design parameters

E(MeV) <	1500	2000	2500	3000	3500
Π (m)			632.94		
F _{RF} (MHz)			350		
2θ (mrad)			60		$2010 \ \ell^* = 1 \ mm$
$\varepsilon_y/\varepsilon_x(\%)$			0.5 Su		.2019 $\beta_y^* = 1 \ mm$
β_x^*/β_y^* (mm) <			100/1		
I(A) <	2	2	2	2	2
$N_{e/bunch} \times 10^{-10}$	9	9	8	9 PEPII	: I(e+)=3.2 A PEPII
N _b	292	292	328		IE : I(e-)=2.45A
<i>U</i> ₀ (keV)	130	260	465	773	1220
V _{RF} (kV)	1600	2000	2500	3500	5000
ν_s	0.0164	0.0159	0.0158	0.017	0.019
δ _{RF} (%)	1.9	1.8	1.7	1.7	1.9
$\sigma_e \times 10^3$ (SR/IBS+WG)	0.28/1	0.4/1.1	0.5/1.1	0.6/1.1	0.7/1.1
σ_s (mm) (SR/IBS+WG)	4/15	7/15	7/15		1 - 2 + 1 - 2 + 1 - 34
$\varepsilon_{\chi}(nm)$ (SR/IBS+WG)	2.7/8.8	5/5.5	7/4.6	SuperKEKB: $L = 3.1 \times 10^{34}$	
$L_{HG} \times 10^{-35} (cm^{-2}s^{-1})$	0.8	1	1	1	1
ξ_x/ξ_y	0.007/0.15	0.005/0.14	0.003/0.1	C SuperKEKF	$B(LER): \tau = 360 s$
$ au_{Touschek}$ (s)	1600	1600	2300	4000	8300
$ au_{Luminosity}$ (s)	2000	1600	1700	1600	1600

• Lattice and layout 2021

10

• Interaction region

CRAB:
$$\begin{aligned} \mu_{\chi} &= 7\pi \\ \mu_{y} &= 5.5\pi \end{aligned}$$

11

• Longitudinal Polarization

• CRAB sextupole influence: 6d-DA

6d-DA, $y_0 = \sigma_y = 1.28e - 05m$

OStatus

- > The linear lattice and parameters provide desired luminosity and polarization
- > Realistic design of new injection facility $2 \times 10^{11} e^+/s$ for 200 s of beam life time
- Detailed design of interaction region and MDI, 3d design of FF quadrupoles, maximum strength is reduced from 100 T/m to 40 T/m
- Siberian snakes sections provide sufficient longitudinal polarization
- > On momentum dynamic aperture is sufficient for injection and beam-beam effects
- Off momentum dynamic aperture with CRAB ON is insufficient at 1.5-2.5 GeV to provide necessary Touschek lifetime (work is in progress)

•Nearest future plans

- Several powerful organizations, labs and institutes as supporters and our united team steadily push the Government to approve the project
- In spite the whole budget is still under discussion by Russian Government, there was a decision to start with R&D and prototypes and money were allocated for 2022-2023 for key components including:
 - FF technical design and 40 T/m FF quad prototype of CCT technology
 - Polarized e- source design and key elements development with photo-gun prototype
 - Optimization and design of positron converter
 - etc..
- SuperKEKB experience show that there are still problems with implementation of the SW collision in real life, BINP consider a test facility in the range of 1-1.5 GeV beam energy with all main CW features (large Piwinski angle, small emittance, large current, low β_y, complicated IR, etc.). Reduce risks for large super charm-tau.

STCF @ USTC

- Topic started since 2013
- First open discussed on Xiangshan Conference 2015
- Accelerator work began from 2018
 - Set goals for two stage construction
 - > 3 faculties and 3 graduate students
- From 2019 to Now, preliminary CDR stage
 - Preliminary lattice design
 - Published in JINST, 2021
 - Several key technologies discussed
 - Optimization work in progress

Supported by local authority and Hefei Comprehensive National Science Center

• Parameters and accelerator physics design

Parameters	Phase 1	Phase 2
Circumference/m	800~1000	800~1000
Optimized Beam Energy/GeV	2	2
Energy Range/GeV	1-3.5	1-3.5
Current/A	2	2
Emittance $(\varepsilon_x/\varepsilon_y)$ /nm·rad	6/0.06	5/0.05
β Function (a) IP $(\beta_x^*/\beta_y^*)/mm$	90/0.9	50/0.5
Collision Angle(full θ)/mrad	60	60
Tune Shift ξ_y	0.06	0.08
Hour-glass Factor	0.9	0.9
Lifetime	600	900
Luminosity/×10 ³⁵ cm ⁻² s ⁻¹	≥0.5	~1.0

- For realistic project
- Stage 1, half luminosity and no polarization
- Stage 2, after operation
 for some time, upgrade to
 high luminosity with
 polarized electron beam

• Parameters and accelerator physics design

Parameters	Value	Unit
Optimize energy E	2.0	GeV
Circumference П	617.06	m
f_{RF}	500	MHz
20	60	mrad
$\varepsilon_y/\varepsilon_x$	0.5	%
β_x^*/β_y^*	90/0.6	mm
I	2.0	А
Ne/bunch	5	10 ¹⁰
N _b	512	-
U ₀	157.3	keV
V _{RF}	3.0	MV
$v_x / v_y / v_s$	40.552/24.571/0.016	-
δ_{RF}	1.8	%
σ_e (w.o/w IBS)	0.56/0.74	10 ⁻³
σ_x (w.o/w IBS)	15.9/19.4	μm
$\sigma_{\rm v}$ (w.o/w IBS)	0.09/0.11	μm
σ_s (w.o/w IBS)	6.7/10	mm
ε_x (w.o/w IBS)	2.8/4.2	nm
L _{HG}	0.5~1×10 ³⁵	$cm^{-2}s^{-1}$
ξ_x/ξ_y	0.004/0.10	-
T _{Touschek}	200	S
Damping time $\tau_x/\tau_y/\tau_s$	52/52/26-> (36/36/18)	ms
Momentum compact factor α_c	5.26×10 ⁻⁴	-

Similar to BINP results, short
 Touschek lifetime project

 We want to use damping wigglers to suppress the damping time so as to reach high luminosity, but still under study

• Lattice and layout 2022

Compared to 2021:

- Hybrid 7BA (H-7BA) -> High order achromat H-7BA, Larger dynamic aperture and momentum aperture
- Tuning the tune between CCY and final doublet(FD), with additional sextupoles at small β
 position, to get large momentum aperture

• Optimization of touschek lifetime

• Beam-beam simulation

- Several new effects become important for the collider performance such as beamstrahlung, coherent X-Z instability and 3D flip-flop.
- > When the X-Z instability is excited, the horizontal emittance increases.
- The instability would exist near the resonance:
- $v_x = 0.5 + k^*vz$, the stable horizontal tune area would shift due to the change of synchrotron tune (v_z).
- At first, we set $v_z = 0.012$ (~3 ξ_x), we gain a really small safe area, which the width is only 0.002~0.003

- We use the ratio of beam size blowup in horizontal direction to identify the instability.
- Due to the beam-beam effects and beamstrahlung effect, the peak of emittance growth will be shifted and then the width of stable collision tune area would be reduced, for $v_z / \xi_x = 3$, it's less than ξ_x .
- Increase v_z from 0.012(3 ξ_x) to 0.016(4 ξ_x), then we gain a wider safe area, which the width is 0.005-0.006.

growth rate [1/turn]

lum at 1damping time

lum/e34

9.885

9.737

9.589

9.441

- 9.293

- 9.144

8.996

8.848

 $vx = 0.5 + k^* vz$, vz=0.016; vy = 0.571

• Injector

e⁺ damping ring

Parameter	Value	
Energy	1.0 GeV	
Perimeter	~58 mm	
Repetition frequency	50 Hz	
Bending radius	2.7 m	
Dipole magnets, B_0	1.4 T	
Momentum compression factor, α_c	0.076	
U ₀	35.8 keV	
Damping time x/y/z	12/12/6 ms	
δ₀	0.05%	
ε ₀	287.4 mm∙mrad	
Bunch length	7 mm	
ε _{ini}	2500 mm∙mrad	
ε _{ext x/y}	704/471 mm∙mrad	
$\delta_{ini}/\delta_{ext}$	0.3/0.06	
Divergence of energy	1%	
f _{rf}	650 MHz	
V _{rf}	1.8 MV	

• Positron Source*

Tungsten

0.25

Target material

e⁺ vield

 Motional target with cooling system designed for STCF positron
 Exporimonts bac

 Experiments had been done on thermal research for single crystaltungsten target

*Published in NIMA

• Bunch size measurement for monitoring the blow-up

- Use synchrotron radiation to monitor the bunch size
 - Use visible light to implement bunch by bunch, turn by turn 3D measurement bunch profile with high time resolution, like 2-4 ns
 - Key technology: signal processing
 - Develop X-ray interferometer to measure the bunch transversal size with high space resolution, like μm to sub- μm
 - Key technology: X-ray optics

• Low Level RF system with domestic electronics

Hardware

- RF Source; Frequency Synthesizer; IF Signal processor
- Software
 - FPGA Firmware; Control Algorithms; EPICS Control

- Signal source & frequency synthesizer have been developed.
- Close loop beam test result for S band LLRF system reached around 0.1° (rms).

OStatus and future plans

- In the last 5 years, USTC and CAS had given more than 20M RMB for preliminary study (including detectors, physics and accelerators)
- Several universities and institutes joined our plan as supporters, more are interested.
- > Applying for Central Government R&D fund now, a decision will be made possibly by October.
- Local authority agreed to give R&D funds in 2022-2025
- A prototype of interaction region and a test facility for electron and positron source will be constructed by 2025.

Conclusion

• A consensus has been reached for collision scheme

- Large Piwinski angle and CW
- More accelerator physics study and further technical experiments are required.
- We have noticed what some of the key problems are, and we may also known the direction where to find the answers.
- Experiences from BEPCII, SuperKEKB are very helpful.
- Test facilities will be very helpful.

Thank you for your attention