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Abstract
Automated tuning, or beam-based optimization, is a gen-

eral approach to improve accelerator performances. The
approach is different from the other common approach of
beam-based correction. The differences between these two
approaches and the advantages of the optimization approach
are discussed. Two online optimization methods, the robust
conjugate direction search (RCDS) and the multi-generation
Gaussian process optimizer (MG-GPO), are described. Ex-
periences of apply the methods to storage ring nonlinear
dynamics optimization at SPEAR3 and APS storage rings,
as well as application to other machines, are presented.

INTRODUCTION
An accelerator typically has many error sources that cause

its behavior to differ from the ideal design. The performance
of the machine can be substantially degraded due to the er-
rors. The machine also has many control parameters (i.e.,
knobs) that can be used to change its behavior, which could
compensate the effects of the errors and restore the machine
performance. Accelerator physicists use beam-based mea-
surements to determine the desired knob adjustments. The
methods employed to find the accelerator setting based on
beam-based measurements could be classified into two cat-
egories: beam-based correction and beam-based optimiza-
tion [1].

In this paper, we will first discuss the characteristics of
these two approaches. This is followed by discussions on
the methods and application of beam-based optimization.
The methods to be focused on are the robust conjugate di-
rection search (RCDS) method [2] and the multi-generation
Gaussian process optimizer (MG-GPO) [3]. Considerations
on application of the methods to real-life accelerator tuning
problems are discussed. Some important applications, such
as minimization of the vertical emittance in storage rings,
tuning of linac front end, and optimization of nonlinear beam
dynamics of storage rings, are described.

BEAM-BASED CORRECTION AND
OPTIMIZATION

The performance of an accelerator can be characterized
by various metrics, such as beam intensity, beam size, beam
lifetime, beam loss, transmission efficiency, injection effi-
ciency, and beam stability. These metrics could be constantly
monitored, or in some cases, are measured on demand. De-
pending on the purpose of the machine, each accelerator may
have a different set of performance metrics of importance.

∗ Work supported by DOE Contract No. DE-AC02-76SF00515
† xiahuang@slac.stanford.edu

In many cases, a set of knobs can target one performance
metric without affecting the others. However, in some cases,
the same set of knobs that are used to tune one metric can
simultaneously impact the other metrics.

The diagnostic system of the accelerator measure and
monitor many signals that represent the state of the machine
or the beam. For example, the orbit of the beam throughout
the accelerator is typically monitored with beam position
monitors (BPMs). The transverse beam profile and in turn
the transverse beam size can be measured at some locations.
In circular accelerators, the betatron tunes can be constantly
monitored. Some machine state variables can be derived
from the monitor signals. In some cases, the beam or the
machine are intentionally perturbed in order to perform an
observation of the machine state. For example, the betatron
phase advances can be measured from turn-by-turn BPM
data when the beam is kicked. The closed orbit response,
measured by making a small change to an orbit corrector, is
another example.

The machine state as characterized by the diagnostic sys-
tem could be directly correlated with the performance met-
rics, such that restoring the machine state automatically also
restores the performance. In other cases, the correlation is
not as strong; yet, it is still generally preferred to operate
under certain machine states. In those cases, a “golden” ma-
chine state can be defined as the target configuration. For
example, a golden beam orbit is usually defined for a storage
ring. Desired values of betatron tunes and chromaticities are
also specified. In a linac or transport line, the desired orbit
and beam distribution is often specified at some strategically
important locations, for example, at the end of the transport
line for injection to another accelerator or at the entrance of
the undulators in a free electron laser.

Often times, a known set of knobs can be used to change
a certain aspect of the machine state. If there are enough
effective knobs, it may be possible to move the machine into
any reasonable state with those knobs. Because usually each
knob has a definitive and predictable effect to the machine
state, given the current machine state, the current knob set-
ting, and the target machine state, one could work out the
required adjustment to the knobs in a deterministic fashion.
As not everything is perfectly known, it may take several
iterations to reach the target state. The process of of bring-
ing the machine state as measured by the beam diagnostic
system to a target state with control knobs via a deterministic
procedure is called beam-based correction.

Beam-based correction requires beam diagnostics that
can sufficiently characterize the machine states, a known
target machine state, knobs that can effectively change the
machine state, and a deterministic procedure to determine
the required knob changes toward the target. Reaching the
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target state does not necessarily leads to the highest ma-
chine performance, as the correlation between the machine
state and the performance metrics is not always strong and
the optimal target state could change with other controlled
or uncontrolled machine conditions (e.g., drift w/ ambient
temperature).

Beam-based optimization is another category of beam-
based methods to tune knobs for improving accelerator
performances. This approach is also referred to as auto-
mated tuning. Manual tuning is common in accelerator
control. As accelerators adopted computerized control early
on, there have been various attempts to automate the tuning
process [2, 4].

Beam-based optimization aims at improving the perfor-
mance metrics directly by changing the tuning knobs, using
the measured performance metrics as the guide. It is the
same as mathematical optimization - the performance met-
rics are the objective functions and the tuning knobs are the
optimization variables. The objective functions are evalu-
ated by performing a measurement on the machine, after
the tuning knobs are dialed in. The accelerator can be con-
sidered a black box; the main requirements for the machine
are that the knobs are effective in changing the performance
and that it can reproduce the performance for the same knob
setting. No measurement of the machine state is necessary,
unless certain features of the machine state are part of the
performance metrics.

The optimization approach has some advantages over the
correction approach. It does not have high requirements for
diagnostics, as measurements for the performance metrics
are usually available. It does not need a target state. This
would be important in the commissioning phase of an accel-
erator as the target state, needed by the correction approach,
may be still undetermined. Nor does it require enough a
prior knowledge about the system to relate the target to the
knobs. Therefore, it is relatively easy to set up and perform
beam-based optimization (see Fig. 1).

The key to beam-based optimization is robust, efficient
optimization algorithms. The requirements for online op-
timization algorithms may differ from that for usual math-
ematical optimization. In the next section we will discuss
the considerations and requirements for online optimization
algorithms, as well as discuss some specific options.

BEAM-BASED OPTIMIZATION
ALGORITHMS

Considerations
Mathematical optimization is a well-researched area.

There are numerous optimization algorithms. However, on-
line optimization has special requirements and not all algo-
rithms are suitable for online application [2].

One important difference is that the objective function
in online optimization is impacted by measurement errors.
For the same machine configuration, corresponding to the
same set of optimization variables, the objective function
evaluated on the machine will have slightly different value

Figure 1: An illustration of the accelerator system for beam-
based correction or optimization.

every time. The difference comes from the measurement
errors of the parameters that come into the definition of the
objective function. These errors could be due to the diagnos-
tic system involved in the measurements. They could also
be due to fluctuations of the machine condition that cause
the parameter to actually change. Errors in the objective
function can severely impact the performance of some al-
gorithms, sometimes causing them to fail completely. For
example, in the Nelder-Mead simplex method [5], the opera-
tions of the algorithm depend on the comparison results of
the function values. When the comparison results are altered
by measurement errors, the algorithm takes wrong paths,
which could slow down or even prevent the convergence to
the optimum.

The measurement errors also cause difficulties to gradient-
based optimization algorithms. These algorithms require
the first-order or second-order derivatives of the objective
function. Ordinarily, the derivatives can be approximated
with numerical differences. However, when there are errors
in function evaluations, the derivatives will have large er-
rors as usually the step size used in numerical differential
is small. The errors to second order derivatives are even
larger. The alternative of using an accelerator model to com-
pute the derivatives may not work as the model is inaccurate
- otherwise online tuning would be unnecessary. There-
fore, gradient-based algorithms, such as Newton’s method
or pseudo-Newton methods, are typically not used in online
applications.

High efficiency is especially important for online optimiza-
tion. This is because evaluation of the objective function
takes time, and the overall time available for machine study
is usually limited. The evaluation time include the time
needed to change the machine setting until it settles in the
new state and the time to measure the performance metrics.
The time for a magnet to change to a new setpoint may be
up to a few seconds, depending on the type of magnet and
power supply. The measurement of performance metrics
could vary from nearly instantaneous, seconds to tens of
seconds, or even longer. An optimization session on the
machine is usually up to a few hours in duration. Therefore,
the number of function evaluations in one session can be
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between tens to a few hundreds, with which the algorithm
has to locate the optimum.

Special consideration is also needed on ensuring the safety
of the machine. Safety caution could be implemented in the
control system, for example, by setting software limit to the
knob ranges. It can also be implemented in the objective
function, in which more complex conditions or measures
can be programmed. For example, a corner in the parameter
space can be excluded; a “not an number” (NaN) value could
be returned for an invalid beam condition; or the optimiza-
tion can be paused if a certain beam condition is detected.
The implementation of the algorithm should be aware of
the scenarios that could occur during the evaluation of the
objective function on the machine. By properly handling the
scenarios, the optimization can be made safer, more efficient,
and more reliable.

Algorithms
We discuss a few useful algorithms for online optimiza-

tion, including Nelder-Mead simplex, robust conjugate direc-
tion search (RCDS), and multi-generation Gaussian process
optimizer (MG-GPO).

The simplex algorithm is an efficient, gradient-free
method. It converges to a minimum by morphing a simplex,
a geometric body in the 𝑁-dimensional parameter space
defined by 𝑁 + 1 vertices, through a number of operations,
including reflection, expansion, and contraction. In online
application, the biggest challenge is that comparison of func-
tion values on the vertices can be altered by measurement
noise, as the simplex size is reduced. The robust simplex
(RSimplex) method can alleviate the issue by using extra
sampling to reduce noise when necessary [6]. However, an
accurate noise model is needed for it to be the most efficient.
Using a large initial simplex size could also help reduce the
impact the noise.

The RCDS method combines the power of conjugate di-
rection searches and a robust, noise-aware 1-dimensional
optimizer and is ideal for locating the optimum from a point
in its vicinity. Search along one conjugate direction is inde-
pendent of the search along another, which gives the method
high efficiency. The conjugate direction set could be derived
from a model by calculating the Hessian matrix of the objec-
tive function. The key of RCDS for its effectiveness comes
from its ability to optimize under noise. During the step
of bracketing the minimum, instead of merely comparing
the function values between two points, the robust 1-D op-
timizer requires the end points to be higher than the lowest
point (for a minimization problem) inside the bracket by
2 or 3 sigma. It also uses parabolic fitting to improve the
accuracy in determining the minimum. The RCDS method
has been successfully applied to many real-life accelerator
optimization problems.

Many optimization algorithms, including simplex and
RCDS, are inclined to converge to a local minimum. In
many accelerator optimization problems, the true challenge
is to find the global optimum in a high dimensional param-
eter space. Stochastic algorithms, such as random search,

simulated annealing, genetic algorithms (GA) [7], and par-
ticle swarm optimization (PSO) [8, 9], are often used for
global optimization. By using random operations to gener-
ate new candidate solutions, or a random decision process,
these algorithms can break out from the attraction of local
minima. However, these algorithms are typically not very
efficient.

The MG-GPO method is a stochastic optimization algo-
rithm with relatively high efficiency, which is enabled by
machine learning. Similar to GA and PSO, it is population
based and generates new solutions with random optimiza-
tions. However, it makes better use of the information con-
tained in the solutions previously evaluated. A Gaussian
process (GP) regression model is constructed for each objec-
tive function, using the existing solutions and a prior model
characterized by the kernel matrix. The models can predict
the performance of a trial solution. Instead of evaluating
all trial solutions, MG-GPO uses the GP models to predict
the performance of a large set of trial solutions and select
only the ones expected to have good performance for evalu-
ation. The algorithm has been benchmarked against many
advanced stochastic algorithms and it was demonstrated it
has superior convergence speed. It has also been tested in
simulation and online problems. The MG-GPO algorithm is
suitable for global optimization of complex, large parameter
spaces.

Bayesian optimization (BO), also based on Gaussian
process regression, has been adopted for accelerator tun-
ing [10–12]. Bayesian optimization can be very efficient.
Compared to BO, MG-GPO may be more robust and less
dependent on the starting point and fine tuning of hyper-
parameters in the algorithm, for example, as experienced in
the linac front-end tuning at APS [13].

APPLICATION EXAMPLES
There have been many successful applications of online

optimization of accelerator performances. We will only
discuss a few selected examples.

Storage Ring Vertical Emittance Minimization
In electron storage rings, the vertical emittance can come

from the horizontal-vertical linear coupling and the vertical
dispersion. Both effects are primarily due to random errors in
the real machine, for example, misalignment of quadrupole
(rolls) and sextupole magnets. Skew quadrupoles are effec-
tive knobs for controlling the vertical emittance as they can
compensate both linear coupling and vertical dispersion. In
storage ring light sources, a small vertical emittance corre-
sponds to photon beam high brightness. In some cases the
vertical emittance is set to a relative high level to achieve
a reasonable Touschek lifetime. Even for these cases, it is
preferable to first minimize the vertical emittance and then
adjust the dispersion wave knob to increase it to the desired
level.

At the SPEAR3 storage ring, the vertical emittance mini-
mization problem has been used to test optimization algo-
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rithms [2,12,14,15]. The ring has 13 free skew quadrupoles,
which are used as tuning knobs. The beam loss rate, in a
Touschek loss dominated parameter regime, normalized by
the single bunch current, can be used as the objective func-
tion. A small vertical emittance corresponds to high beam
loss rate. The beam loss rate can be measured by observing
the beam current change over a fixed duration, or with beam
loss monitors. In the latter case, it may be desirable to con-
centrate beam loss at where the loss monitor is located or
use loss monitors distributed around the ring.

The RCDS method has been used to minimize the
SPEAR3 vertical emittance [2]. The conjugate direction
set is obtained with the Jacobian matrix of the off-diagonal
blocks of the orbit response matrix with respect to the skew
quadrupole knobs - it corresponds to the singular value
decomposition (SVD) of the Jacobian matrix. In the ex-
periments, all of the skew quadrupoles are initially set to
zero strength. With about 200 function evaluations, the
beam loss rate is increased to the maximum level. The skew
quadrupole setting for the maximum beam loss rate is sim-
ilar to the setting found with LOCO (correction with orbit
response matrix) [16, 17], while the maximum loss rate was
higher than that of LOCO. The MG-GPO method has also
been successfully applied to the SPEAR3 vertical emittance
minimization problem [15].

Linac Transmission
Online optimization has been successfully used to tune

the machine for optimal beam transmission in the linacs of
both SPEAR3 and APS.

Some recent results for APS linac are reported in [13].
In the APS experiments, the goal is improve the transmis-
sion from the gun, around the alpha magnet, and in the first
section of the linac. The objective function is the the charge
measured in the L3 section. The tuning knobs are steering
magnets and quadrupole magnets before and immediately
after the alpha magnet. There are 12 tuning knobs. Several
algorithms have been tested, including the simplex method,
RCDS, PSO, and MG-GPO. Simplex works in many cases
and converges fast, although it can also fail to make any
improvement. For RCDS, it is important to correctly set
the noise sigma parameter. For the MG-GPO algorithm,
different population size of 8, 12, 20, and 30 was tried and
was found to be robust. It converges faster than the PSO
method and can find better solutions. The online tuning has
been very helpful when a new gun was installed and it has
been routinely used for linac front-end tuning.

Storage Ring Nonlinear Dynamics Optimization
Storage ring nonlinear dynamics tuning is extremely im-

portant for the commissioning of low emittance storage rings
since these rings tend to have small dynamic aperture and
momentum aperture, while there is no other reliable methods
to compensate the inevitable errors in the real machine [18].

Online optimization of dynamic aperture with the RCDS
method has been successively applied at several storage
rings, including SPEAR3, MAX-IV [19], and NSLS-II [20].

Typically, the injection efficiency can be used as the ob-
jective function. If the initial injection efficiency is high,
a reduced kicker bump or kicker bump mismatch may be
used to decrease the injection efficiency and thus allow room
for improvement. The sextupole and octupole (if available)
magnets are used as tuning knobs. In the SPEAR3 case, a
substantial improvement of more than 30% was achieved for
DA; similarly large improvement was seen on MAX-IV and
NSLS-II. PSO and MG-GPO have also been successfully
used for DA optimization at SPEAR3.

At ESRF, sextupole knobs were used to maximize the
Touschek lifetime [21]. The objective is lifetime normalized
with beam current and the measured vertical beam size. In
an experiment, the lifetime was improved from 11 h to 17 h.

In a recent study [22], simultaneous optimization of the
dynamic aperture and Touschek lifetime was demonstrated
on the APS storage ring, using MG-GPO, a multi-objective
optimization method. The same 5 sextupole knobs are used
for both objectives. These knobs are constructed from the
280 sextupole magnets, each with individual power supply,
with symmetry considerations. A population size of 15 was
used. To evaluate the objective functions without frequently
dumping beam, for each generation, the injection efficiency
was first measured for all solutions, which is followed by the
lifetime measurements. Substantial improvements to both
the dynamic aperture and the Touschek lifetime objectives
were made.

SUMMARY
We discussed characteristics of the two beam-based ap-

proaches for improving accelerator performance: correction
and optimization, in particular, the need for beam-based
optimization and the special considerations for its imple-
mentation. Several online optimization algorithms, such as
simplex, RCDS, and MG-GPO, are discussed. Their appli-
cation to a few important real-life accelerator problems are
described.
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