# LATEST RESULTS ON KAON PHYSICS AT KLOE-2

A. Di Domenico<sup>\*</sup>, Sapienza University of Rome and INFN Sez. Roma, Rome, Italy on behalf of KLOE-2 Collaboration

### Abstract

The most recent results obtained by the KLOE-2 collaboration with entangled neutral kaons produced at DA $\Phi$ NE are briefly reviewed: (i) an improved search for decoherence and  $\mathscr{CPT}$  violation effects in the process  $\phi \to K_S K_L \to \pi^+\pi^-\pi^+\pi^-$ , constraining with the utmost precision several phenomenological models; (ii) the first direct test of the  $\mathscr{T}$  and  $\mathscr{CPT}$  symmetries in neutral kaon transitions between flavor and  $\mathscr{CP}$  eigenstates, by studying the processes  $\phi \to K_S K_L \to \pi^+\pi^-\pi e\nu$ ,  $\phi \to K_S K_L \to \pi e\nu 3\pi^0$ ; (iii) a new measurement of the  $K_S \to \pi e\nu$  branching fraction, that in combination with the previous KLOE result improves the total precision by almost a factor of two, and allows a new derivation of  $f_+(0)|V_{us}|$ .

#### KLOE AND $DA\Phi NE$

DAΦNE, the Frascati  $\phi$ -factory [1], is an  $e^+e^-$  collider working at a center of mass energy of  $\sqrt{s} \sim 1020$  MeV, corresponding to the peak of the  $\phi$  resonance. The  $\phi$  production cross section is ~3 µb, and the  $\phi \rightarrow K^0 \bar{K}^0$  decay has a branching fraction of 34%. The neutral kaon pair is produced into a fully anti-symmetric entangled state with quantum numbers  $J^{\mathcal{PC}} = 1^{--}$ :

$$\begin{split} |i\rangle &= \frac{1}{\sqrt{2}} \{ |\mathbf{K}^{0}\rangle | \bar{\mathbf{K}}^{0}\rangle - | \bar{\mathbf{K}}^{0}\rangle | \mathbf{K}^{0}\rangle \} \\ &= \frac{\mathcal{N}}{\sqrt{2}} \{ |\mathbf{K}_{\mathrm{S}}\rangle | \mathbf{K}_{\mathrm{L}}\rangle - | \mathbf{K}_{\mathrm{L}}\rangle | \mathbf{K}_{\mathrm{S}}\rangle \} \end{split}$$
(1)

with  $\mathcal{N} = \sqrt{(1 + |\epsilon_S|^2)(1 + |\epsilon_L|^2)/(1 - \epsilon_S \epsilon_L)} \approx 1$  a normalization factor, and  $\epsilon_{S,L}$  the small  $\mathcal{CP}$  impurities in the mixing of the physical states  $K_{S,L}$  with definite widths  $\Gamma_{S,L}$  and masses  $m_{S,L}$ .

The double differential decay rate of the state  $|i\rangle$  into decay products  $f_1$  and  $f_2$  at proper times  $t_1$  and  $t_2$ , respectively, is an observable quantity at a  $\phi$ -factory. After integration on  $(t_1 + t_2)$  at fixed time difference  $\Delta t = t_2 - t_1 \ge 0$ , the decay intensity can be written as follows [2]:

$$I(f_1, f_2; \Delta t) = C_{12} \{ |\eta_2|^2 e^{-\Gamma_L \Delta t} + |\eta_1|^2 e^{-\Gamma_S \Delta t} -2|\eta_1||\eta_2|e^{-\frac{(\Gamma_S + \Gamma_L)}{2}\Delta t} \cos[\Delta m \Delta t + \phi_1 - \phi_2] \}.$$
(2)

with  $\Delta m = m_L - m_S$ ,  $\eta_i \equiv |\eta_i| e^{i\phi_i} = \frac{\langle f_i|T|\mathbf{K}_L \rangle}{\langle f_i|T|\mathbf{K}_S \rangle}$ , and  $C_{12} = \frac{|\mathcal{N}|^2}{2(\Gamma_S + \Gamma_L)} |\langle f_1|T|\mathbf{K}_S \rangle \langle f_2|T|\mathbf{K}_S \rangle|^2$ .

The detection of a kaon at large times  $t_2$  satisfying the condition  $e^{-(\Gamma_{\rm S}-\Gamma_{\rm L})\Delta t}/|\eta_2| \ll 1$  post-tags a K<sub>S</sub> state in the opposite direction. This is a unique feature at a  $\phi$ -factory,

The KLOE experiment operated at DA $\Phi$ NE with a detector mainly consisting of a large volume drift chamber [4] surrounded by an electromagnetic calorimeter [5], both immersed in a 0.52 T uniform magnetic field provided by a superconducting coil. KLOE completed its data taking campaign in 2006 collecting an integrated luminosity of 2.5 fb<sup>-1</sup>. A second data taking campaign was carried out in years 2014-2018 by the KLOE-2 experiment [6], the successor of KLOE, at an upgraded DA $\Phi$ NE collider [7, 8], collecting an integrated luminosity of 5.5 fb<sup>-1</sup>. In total KLOE and KLOE-2 collected 8 fb<sup>-1</sup> of data, corresponding to ~ 2.4 × 10<sup>10</sup>  $\phi$ -mesons and ~ 8 × 10<sup>9</sup> K<sub>S</sub>K<sub>L</sub> pairs produced. All the results presented in this paper have been obtained using the KLOE data sample.

# SEARCH FOR DECOHERENCE AND ピアプ VIOLATION EFFECTS

The quantum interference between the decays of the entangled kaons in state (1) is studied in the  $\mathscr{CP}$ -violating process  $\phi \rightarrow K_S K_L \rightarrow \pi^+ \pi^- \pi^+ \pi^-$ , which exhibits the characteristic Einstein–Podolsky–Rosen correlations that prevent both kaons to decay into  $\pi^+ \pi^-$  at the same time. The measured  $\Delta t$  distribution can be fitted with the distribution:

$$I(\pi^{+}\pi^{-},\pi^{+}\pi^{-};\Delta t) \propto e^{-\Gamma_{L}\Delta t} + e^{-\Gamma_{S}\Delta t}$$
$$-2(1-\zeta_{SL})e^{-\frac{(\Gamma_{S}+\Gamma_{L})}{2}|\Delta t|}\cos(\Delta m\Delta t), \qquad (3)$$

where the quantum mechanical expression (2) in the {K<sub>S</sub>, K<sub>L</sub>} basis has been modified with the introduction of a decoherence parameter  $\zeta_{SL}$ , and a factor  $(1 - \zeta_{SL})$  multiplying the interference term. Analogously, a  $\zeta_{0\bar{0}}$  parameter can be defined in the {K<sup>0</sup>, K<sup>0</sup>} basis [9].  $\Delta t$  resolution and detection efficiency effects, as well as background contributions due to K<sub>S</sub>-regeneration on the beam pipe wall, and the nonresonant  $e^+e^- \rightarrow \pi^+\pi^-\pi^+\pi^-$  process, are all taken into account in the fit. Figure 1 shows as an example the result in the case of the  $\zeta_{SL}$  decoherence model. The analysis of a data sample corresponding to L ~ 1.7 fb<sup>-1</sup> yields the following results [10]:

$$\begin{aligned} \zeta_{SL} &= (0.1 \pm 1.6_{\text{stat}} \pm 0.7_{\text{syst}}) \times 10^{-2} \\ \zeta_{0\bar{0}} &= (-0.5 \pm 8.0_{\text{stat}} \pm 3.7_{\text{syst}}) \times 10^{-7} , \quad (4) \end{aligned}$$

compatible with the prediction of quantum mechanics, i.e.  $\zeta_{SL} = \zeta_{0\bar{0}} = 0$ , and no decoherence effect. In particular the result on  $\zeta_{0\bar{0}}$  has a high precision,  $\mathcal{O}(10^{-6})$ , due to the  $\mathcal{CP}$  suppression present in the specific decay channel; it is an improvement of five orders of magnitude over the limit obtained by a re-analysis of CPLEAR data [9, 11]. This

<sup>\*</sup> antonio.didomenico@roma1.infn.it

65th ICFA Adv. Beam Dyn. Workshop High Luminosity Circular e<sup>+</sup>e<sup>-</sup> Colliders ISBN: 978–3–95450–236–3 ISSN: 2673–7027



Figure 1: Data and fit distribution for the  $\zeta_{SL}$  decoherence model with background contributions displayed.

result can also be compared to a similar test in the B meson system [12], where an accuracy of  $\mathcal{O}(10^{-2})$  is reached.

Decoherence effects may appear in a quantum gravity scenario in connections with  $\mathscr{CPT}$  violation, being the quantum mechanical operator generating  $\mathscr{CPT}$  transformations *ill-defined*. In this case a model for decoherence can be formulated [13, 14] in which neutral kaons are described by a density matrix  $\rho$  that obeys a modified Liouville-von Neumann equation. In this context  $\gamma$  is one of the relevant parameters describing decoherence and  $\mathscr{CPT}$  violation. It has mass units and in a quantum gravity scenario it is presumed to be at most of  $\mathscr{O}(m_K^2/M_{\text{Planck}}) \sim 2 \times 10^{-20} \text{ GeV}$ . Fitting the same  $I(\pi^+\pi^-, \pi^+\pi^-; \Delta t)$  distribution as in the  $\zeta$  parameters analysis, the following result is obtained [10]:

$$\gamma = (1.3 \pm 9.4_{\text{stat}} \pm 4.2_{\text{syst}}) \times 10^{-22} \,\text{GeV} \,, \quad (5)$$

compatible with no decoherence and  $\mathscr{CPT}$  violation, improving the previous result by CPLEAR [15], while the sensitivity reaches the interesting Planck's region.

As discussed above, in a quantum gravity framework inducing decoherence, the  $\mathscr{CPT}$  operator is ill-defined. This consideration has intriguing consequences in entangled neutral kaon states, where the resulting loss of particle-antiparticle identity could induce a breakdown of the correlation in state (1) imposed by Bose statistics [16]. As a result the initial state (1) can be parametrized in general as:

$$\begin{aligned} |i\rangle &= \frac{1}{\sqrt{2}} [|\mathbf{K}^{0}\rangle | \bar{\mathbf{K}}^{0}\rangle - | \bar{\mathbf{K}}^{0}\rangle | \mathbf{K}^{0}\rangle \\ &+ \omega \left( |\mathbf{K}^{0}\rangle | \bar{\mathbf{K}}^{0}\rangle + | \bar{\mathbf{K}}^{0}\rangle | \mathbf{K}^{0}\rangle \right) ], \end{aligned}$$
(6)

where  $\omega$  is a complex parameter describing a novel CPT violation phenomenon, and in this scenario its order of magnitude is expected to be at most:

$$|\omega| \sim \left[ (m_K^2/M_{\text{Planck}})/\Delta\Gamma \right]^{1/2} \sim 10^{-3}$$

with  $\Delta \Gamma = \Gamma_S - \Gamma_L$ . The study performed on the  $\Delta t$  distribution of the  $\phi \rightarrow K_S K_L \rightarrow \pi^+ \pi^- \pi^+ \pi^-$  process including

eeFACT2022, Frascati, Italy JACoW Publishing doi:10.18429/JACoW-eeFACT2022-TUXAS0101

in the fit the modified initial state Eq. (6), yields the most precise measurement of the complex parameter  $\omega$  [10]:

$$\begin{aligned} \mathfrak{R}(\omega) &= \left(-2.3^{+1.9}_{-1.5\,\text{stat}} \pm 0.6_{\text{syst}}\right) \times 10^{-4} \\ \mathfrak{I}(\omega) &= \left(-4.1^{+2.8}_{-2.6\,\text{stat}} \pm 0.9_{\text{syst}}\right) \times 10^{-4} , \end{aligned}$$
(7)

with an accuracy that already reaches the interesting Planck scale region.

Results (4), (5), and (7) represent a sizeable improvement with respect to previous measurements [9, 11, 15, 17]. They are consistent with no deviation from quantum mechanics and  $\mathscr{CPT}$  symmetry, while for some parameters the precision reaches the interesting level at which – in the most optimistic scenarios – quantum gravity effects might show up. They provide the most stringent limits up to date on the considered models.

# DIRECT F, CP, CPF TESTS

In order to realize direct tests of  $\mathcal{T}$ ,  $\mathcal{CP}$ ,  $\mathcal{CPT}$  symmetries in neutral kaon transition processes, it is necessary to compare the probability of a reference transition with its symmetry conjugate. The exchange of *in* and *out* states required for a genuine test involving an anti-unitary transformation implied by time-reversal  $\mathcal{T}$ , can be implemented exploiting the entanglement of K<sup>0</sup>K<sup>0</sup> pairs [18, 19], as briefly described in the following.

The initial kaon pair produced in  $\phi \to K^0 \bar{K}^0$  decays can be rewritten in terms of any pair of orthogonal states:

$$|i\rangle = \frac{1}{\sqrt{2}} \{ |\mathbf{K}^{0}\rangle | \bar{\mathbf{K}}^{0}\rangle - | \bar{\mathbf{K}}^{0}\rangle | \mathbf{K}^{0}\rangle \}$$
$$= \frac{1}{\sqrt{2}} \{ |\mathbf{K}_{+}\rangle | \mathbf{K}_{-}\rangle - | \mathbf{K}_{-}\rangle | \mathbf{K}_{+}\rangle \} .$$
(8)

Here the states  $|K_{-}\rangle$ ,  $|K_{+}\rangle$  are defined as the states which cannot decay into pure  $\mathscr{CP} = \pm 1$  final states,  $\pi\pi$  or  $3\pi^0$ , respectively [18, 19]. The condition of orthogonality  $\langle \mathbf{K}_{-} | \mathbf{K}_{+} \rangle = 0$ , corresponds to assume negligible direct  $\mathscr{CP}$ and/or  $\mathcal{CPT}$  violation contributions in the decay, while the  $\Delta S = \Delta Q$  rule is also assumed, so that the two flavor orthogonal eigenstates  $|K^0\rangle$  and  $|\bar{K}^0\rangle$  are identified by the charge of the lepton in semileptonic decays. Thus, exploiting the perfect anticorrelation of the states implied by Eq. (8), it is possible to have a "flavor-tag" or a "CP-tag", i.e. to infer the flavor ( $K^0$  or  $\overline{K}^0$ ) or the  $\mathscr{CP}(K_+ \text{ or } K_-)$  state of the still alive kaon by observing a specific flavor decay  $(\pi^+ \ell^- \nu \text{ or }$  $\pi^{-\ell^+}\bar{\nu}$ , in short  $\ell^+$  or  $\ell^-$ ) or  $\mathscr{CP}$  decay ( $\pi\pi$  or  $3\pi^0$ ) of the other (and first decaying) kaon in the pair. Then the decay of the surviving kaon into a semileptonic ( $\ell^+$  or  $\ell^-$ ),  $\pi\pi$  or  $3\pi^0$  final state, filter the kaon final state as a flavor or  $\mathscr{CP}$ state.

In this way one can identify a reference transition (e.g.  $K^0 \rightarrow K_-$ ) and its symmetry conjugate (e.g. the  $\mathscr{CPT}$ -conjugated  $K_- \rightarrow \bar{K^0}$ ), and directly compare them through the corresponding ratios of probabilities. The observable

ratios for the various symmetry tests can be defined as follows [20]:

$$R_{2,\mathcal{F}} \equiv \frac{I(\ell^-, 3\pi^0; \Delta t \gg \tau_S)}{I(\pi\pi, \ell^+; \Delta t \gg \tau_S)} \cdot \frac{1}{D_{\mathcal{CPF}}}$$
  
= 1 - 4\Replace \epsilon + 4\Replace \pm x\_+ + 4\Replace \pm y\_. (9)

$$R_{4,\mathcal{T}} \equiv \frac{I(\ell^+, 3\pi^0; \Delta t \gg \tau_S)}{I(\pi\pi, \ell^-; \Delta t \gg \tau_S)} \cdot \frac{1}{D_{\mathcal{CPT}}}$$
  
= 1 + 4 \Reflect \epsilon + 4 \Reflect \epsilon\_+ - 4 \Reflect \epsilon, (10)

$$R_{2,\mathscr{CP}} \equiv \frac{I(\ell^{-}, 3\pi^{0}; \Delta t \gg \tau_{S})}{I(\ell^{+}, 3\pi^{0}; \Delta t \gg \tau_{S})}$$

$$= 1 - 4\Im c - 4\Im r + 4\Im r = 1$$
(1)

$$= 1 - 4\Re\epsilon_S - 4\Re x_- + 4\Re y, \qquad (11)$$
  
$$_{4,\mathscr{CP}} \equiv \frac{I(\pi\pi, \ell^+; \Delta t \gg \tau_S)}{I(\pi\pi, \ell^-; \Delta t \gg \tau_S)}$$

$$= 1 + 4\Re\epsilon_L - 4\Re x_- - 4\Re y, \qquad (12)$$

$$R_{2,\mathscr{CPT}} \equiv \frac{I(\ell^{-}, 3\pi^{0}; \Delta t \gg \tau_{S})}{I(\pi \pi, \ell^{-}; \Delta t \gg \tau_{S})} \cdot \frac{1}{D_{\mathscr{CPT}}}$$

$$= I - 4\Im\delta + 4\Im x_{+} - 4\Im x_{-}, \qquad (13)$$

$$R_{4,\mathscr{CPF}} \equiv \frac{I(\ell^{+}, 3\pi^{0}; \Delta t \gg \tau_{S})}{I(\pi\pi, \ell^{+}; \Delta t \gg \tau_{S})} \cdot \frac{1}{D_{\mathscr{CPF}}} \qquad (14)$$

where  $I(f_1, f_2; \Delta t \gg \tau_S)$  is the double decay rate (2) in the asymptotic region  $\Delta t \gg \tau_S$  [2, 18, 19], with  $f_1$  occurring before  $f_2$  decay and  $\Delta t > 0$ . The constant factor  $D_{\mathcal{CPT}}$  is defined as:

$$D_{\mathscr{CPT}} = \frac{\left| \langle 3\pi^0 | T | \mathbf{K}_{-} \rangle \right|^2}{\left| \langle \pi^+ \pi^- | T | \mathbf{K}_{+} \rangle \right|^2} = \frac{\mathrm{BR} \left( \mathbf{K}_{\mathrm{L}} \to 3\pi^0 \right)}{\mathrm{BR} \left( \mathbf{K}_{\mathrm{S}} \to \pi^+ \pi^- \right)} \frac{\Gamma_L}{\Gamma_S} ,$$

and can be determined from measurable branching fractions and lifetimes of  $K_{S,L}$  states [19, 20]. For  $\Delta t = 0$  one has by construction no symmetry violation, within our assumptions. The measurement of any deviation from the prediction  $R_{i,s} =$ 1 (with  $s = \mathcal{T}, \mathcal{CP}$ , or  $\mathcal{CPT}$ , and i = 2, 4) imposed by the symmetry invariance is a direct signal of the symmetry violation built in the time evolution of the system. The following double ratios independent of the factor  $D_{\mathcal{CPT}}$ can also be defined:

$$DR_{\mathcal{T},\mathcal{CP}} \equiv \frac{R_{2,\mathcal{T}}}{R_{4,\mathcal{T}}} \equiv \frac{R_{2,\mathcal{CP}}}{R_{4,\mathcal{CP}}} = 1 - 8\Re\epsilon + 8\Re y \, (15)$$

$$DR_{\mathscr{CPT}} \equiv \frac{R_{2,\mathscr{CPT}}}{R_{4,\mathscr{CPT}}} = 1 - 8\Re\delta - 8\Re x_{-} .$$
(16)

The r.h.s. of Eqs.(9)-(16) is evaluated to first order in small parameters;  $\epsilon$  and  $\delta$  are the usual  $\mathcal{T}$  and  $\mathcal{CPT}$  violation parameters in the neutral kaon mixing, respectively, and  $\epsilon_{S,L} = \epsilon \pm \delta$  the  $\mathcal{CP}$  impurities in the physical states K<sub>S</sub> and K<sub>L</sub>; the small parameter *y* describes a possible  $\mathcal{CPT}$ violation in the  $\Delta S = \Delta Q$  semileptonic decay amplitudes, while  $x_+$  and  $x_-$  describe  $\Delta S \neq \Delta Q$  semileptonic decay amplitudes with  $\mathcal{CPT}$  invariance and  $\mathcal{CPT}$  violation, respectively. Therefore the r.h.s. of Eqs.(9)-(16) shows the effect of symmetry violations only in the effective Hamiltonian description of the neutral kaon system according to the Weisskopf-Wigner approximation, without the presence of other possible sources of symmetry violations. The small spurious effects due to the release of our assumptions are also shown, including possible  $\Delta S = \Delta Q$  rule violations  $(x_+, x_- \neq 0)$  and/or direct  $\mathscr{CPT}$  violation effects  $(y \neq 0)$ . It is worth noting that the direct  $\mathscr{CPF} \epsilon'$  effects are fully negligible in the asymptotic region  $\Delta t \gg \tau_S$  [18, 19].

The KLOE-2 collaboration recently completed the analysis of a data sample corresponding to an integrated luminosity  $L = 1.7 \text{ fb}^{-1}$  collected at the DA $\Phi$ NE  $\phi$ -factory, and measured all eight observables defined in Eqs.(9)-(16). The  $\Delta t$  distributions of the  $\phi \to K_S K_L \to \pi^+ \pi^- \pi e \nu$  and  $\phi \rightarrow K_S K_L \rightarrow \pi e \nu 3\pi^0$  processes are studied in the asymptotic region  $\Delta t \gg \tau_S$ . A time of flight technique is used to identify semileptonic decays for both K<sub>S</sub> and K<sub>L</sub>. K<sub>L</sub>  $\rightarrow$  3 $\pi^0$ decays are identified reconstructing the decay position and time using a trilateration method applied to the best candidate set of six reconstructed photons from  $\pi^0$  decays. Residual background for the  $\phi \rightarrow K_S K_L \rightarrow \pi e \nu 3\pi^0$  channel is evaluated with the aid of Monte Carlo (MC) simulation and subtracted. Signal selection efficiencies are evaluated from MC and corrected with data using independent control samples. The  $\Delta t$  distributions of observables ratios (9)-(16) are then constructed and fitted with a constant.

The final results obtained for the eight observable ratios (9)-(16) are summarized in Fig.2, and compared with the expected values from  $\mathscr{CPT}$  invariance and  $\mathscr{T}$  violation extrapolated from observed  $\mathscr{CP}$  violation in the K<sup>0</sup> –  $\bar{K^0}$  mixing [21].



Figure 2: Comparison of the measured symmetry-violationsensitive single and double ratios (9)-(16) and their expected values (horizontal dashed lines). Solid error bars denote statistical uncertainties and dotted error bars represent total uncertainties (including systematic uncertainties and the error on the  $D_{\mathcal{CPT}}$  factor in case of single  $\mathcal{T}$  and  $\mathcal{CPT}$ violation sensitive ratios). The right-hand-side panel magnifies the region of the  $\mathcal{CP}$ -violation-sensitive ratio  $R_{4,\mathcal{CP}}$ .

For the  $\mathcal{T}$  and  $\mathcal{CPT}$  single ratios a total error of 2.5 % is reached, while for the double ratios (15) and (16) the total error is increased to 3.5 %, with the advantage of in principle a doubled sensitivity to violation effects, and of

R

32

65th ICFA Adv. Beam Dyn. Workshop High Luminosity Circular e<sup>+</sup>e<sup>-</sup> Colliders ISBN: 978-3-95450-236-3 ISSN: 2673-7027

independence from the  $D_{\mathcal{CPT}}$  factor. The measurement of the single ratio  $R_{4,\mathcal{CP}}$  benefits of highly allowed decay rates for the involved channels, reaching an error of 0.13 %.

The double ratio  $DR_{\mathscr{CPT}}$  is our best observable for testing  $\mathscr{CPT}$ , free from approximations and model independent, while  $DR_{\mathscr{T},\mathscr{CP}}$  assumes no direct  $\mathscr{CPT}$  violation and is even under  $\mathscr{CPT}$ , therefore it does not disentangle  $\mathscr{T}$  and  $\mathscr{CP}$  violation effects, contrary to the genuine  $\mathscr{T}$  and  $\mathscr{CP}$ single ratios.

No result on  $\mathcal{T}$  and  $\mathcal{CPT}$  observables shows evidence of symmetry violation. We observe  $\mathcal{CP}$  violation in transitions in the single ratio  $R_{4,\mathcal{CP}}$  with a significance of 5.2 $\sigma$ , in agreement with the known  $\mathcal{CP}$  violation in the K<sup>0</sup> –  $\bar{K^0}$  mixing [21] using a different observable.

### **NEW MEASUREMENT OF** $\mathscr{B}(\mathbf{K}_{\mathbf{S}} \rightarrow \pi e \nu)$

The branching fraction for semileptonic decays of charged and neutral kaons together with the lifetime measurements are used to determine the  $|V_{us}|$  element of the Cabibbo– Kobayashi–Maskawa quark mixing matrix. The relation among the matrix elements of the first row,  $|V_{ud}|^2 + |V_{us}|^2 +$  $|V_{ub}|^2 = 1$ , provides the most stringent test of the unitarity of the quark mixing matrix.

Different factors contribute to the uncertainty in determining  $|V_{us}|$  from kaon decays, discussed in Refs. [22–25] and among the six semileptonic decays the contribution of the lifetime uncertainty is smallest for the K<sub>S</sub> meson. Nevertheless, given the lack of pure high-intensity K<sub>S</sub> meson beams compared with K<sup>±</sup> and K<sub>L</sub> mesons, the measurements of K<sub>S</sub> semileptonic decays from the KLOE [26,27] and NA48 [28] experiments provide the least precise determination of  $|V_{us}|$ .

A data sample corresponding to an integrated luminosity of L = 1.63 fb<sup>-1</sup> collected by KLOE was analyzed by the KLOE-2 collaboration. K<sub>S</sub> states are tagged by identifying the interaction of their entangled partners in the calorimeter (K<sub>L</sub>-crash). The K<sub>S</sub>  $\rightarrow \pi e \nu$  signal selection exploits a boosted decision tree (BDT) classifier built with kinematic variables measured with DC only together with time-of-flight measurements from EMC. The signal yield is provided by the fit to the reconstructed electron mass distribution shown in Fig.3, and is then normalised to K<sub>S</sub>  $\rightarrow \pi^+\pi^-$  decays in the same data set. K<sub>L</sub>  $\rightarrow \pi e \nu$  data control samples are used to evaluate signal selection efficiencies. Finally the branching fraction is derived [29]:

$$\mathcal{B}(K_S \to \pi e \nu) = (7.211 \pm 0.046_{stat} \pm 0.052_{syst}) \times 10^{-4}.$$

The previous result from KLOE [26], based on an independent data sample corresponding to 0.41 fb<sup>-1</sup> of integrated luminosity, is  $\mathcal{B}(K_S \rightarrow \pi e \nu) = (7.046 \pm 0.076_{stat} \pm 0.049_{syst}) \times 10^{-4}$ . The combination of the two results, accounting for correlations between the two measurements, gives

$$\mathcal{B}(K_S \to \pi e \nu) = (7.153 \pm 0.037_{stat} \pm 0.043_{syst}) \times 10^{-4},$$

reducing the overall uncertainty on the branching fraction at the 0.8% level. The value of  $|V_{us}|$  is related to the K<sub>S</sub>



Figure 3: The  $m_e^2$  distribution for data, MC signal and background compared with the fit result.

semileptonic branching fraction by the equation

$$\mathcal{B}(\mathbf{K}_{\mathrm{S}} \rightarrow \pi \ell \nu) = \frac{G^2 (f_+(0)|V_{us}|)^2}{192\pi^3} \tau_S m_K^5 I_K^\ell S_{\mathrm{EW}}(1+\delta_{\mathrm{EM}}^{K\ell}),$$

where  $I_K^{\ell}$  is the phase-space integral, which depends on measured semileptonic form factors,  $S_{\rm EW}$  is the short-distance electro-weak correction,  $\delta_{\rm EM}^{K\ell}$  is the mode-dependent long-distance radiative correction, and  $f_+(0)$  is the form factor at zero momentum transfer for the  $\ell\nu$  system. Using the values  $S_{\rm EW} = 1.0232 \pm 0.0003$  [30],  $I_K^e = 0.15470 \pm 0.00015$  and  $\delta_{\rm EM}^{Ke} = (1.16 \pm 0.03) \ 10^{-2}$  from Ref. [25], and the world average values for the K<sub>S</sub> mass and lifetime [21] we derive

$$f_{\pm}(0)|V_{us}| = 0.2170 \pm 0.0009,$$

with a sizable reduction of the uncertainty with respect to the previous derivation, from 0.6% to 0.4%.

#### CONCLUSION

Recent analyses by the KLOE-2 collaboration on entangled neutral kaons yielded improved precision tests of Quantum Mechanics and CPT symmetry, the first direct tests of T and CPT symmetries in neutral kaon transitions, and a new measurement of the  $K_S \rightarrow \pi e \nu$  branching fraction.

The analysis of the total 8  $\text{fb}^{-1}$  of data collected by KLOE and KLOE-2 is in progress and will constitute a unique opportunity to push forward a rich Physics program including these kind of studies on discrete symmetries, and on the properties of the entanglement of neutral kaons.

#### REFERENCES

- A. Gallo *et al.*, "DAΦNE status report", *Conf. Proc.*, vol. C060626, p. 604, 2006.
- [2] A. Di Domenico (Ed.), "Handbook on Neutral Kaon Interferometry at a φ-factory", *Frascati Phys. Ser.*, vol. 43 INFN-LNF, Frascati, 2007; available online at http://www.lnf.infn.it/sis/frascatiseries/ Volume43/volume43.pdf

65th ICFA Adv. Beam Dyn. Workshop High Luminosity Circular e\*e<sup>-</sup> Colliders ISBN: 978-3-95450-236-3 ISSN: 2673-7027

- eeFACT2022, Frascati, Italy JACoW Publishing doi:10.18429/JACoW-eeFACT2022-TUXAS0101
- [3] J. Bernabeu and A. Di Domenico, "Can future observation of the living partner post-tag the past decayed state in entangled neutral K mesons?", *Phys. Rev. D*, vol. 105, p. 116004, 2022.
- [4] M. Adinolfi *et al.*, "The tracking detector of the KLOE experiment", *Nucl. Instrum. Methpds A*, vol. 488, p. 51, 2002.
- [5] M. Adinolfi et al., "The KLOE electromagnetic calorimeter", Nucl. Instrum. Methods A, vol. 482, p. 364, 2002.
- [6] G. Amelino-Camelia *et al.*, "Physics with the KLOE-2 experiment at the upgraded DAΦNE", *Eur. Phys. J. C*, vol. 68, p. 619, 2010.
- [7] M. Zobov *et al.*, "Test of crab-waist collisions at the DAΦNE Φ factory", *Phys. Rev. Lett.*, vol. 104, p. 174801, 2010.
- [8] C. Milardi *et al.*, "High luminosity interaction region design for collisions inside high field detector solenoid", *J. Instrum.*, vol. 7, p. T03002, 2012.
- [9] R. A. Bertlmann, W. Grimus, and B. C. Hiesmayr, "Quantum mechanics, Furry's hypothesis, and a measure of decoherence in the K<sup>0</sup> K
  <sup>¯</sup><sup>0</sup> system", *Phys. Rev. D*, vol. 60, p. 114032, 1999.
- [10] KLOE-2 Collaboration, D. Babusci *et al.*, "Precision tests of quantum mechanics and CPT symmetry with entangled neutral kaons at KLOE", *J. High Energy Phys.*, vol. 04, p. 059, 2022.
- [11] A. Apostolakis *et al.*, "An EPR experiment testing the nonseparability of the K<sup>0</sup> anti-K<sup>0</sup> wave function", *Phys. Lett. B*, vol. 422, p. 339, 1998.
- [12] A. Go *et al.*, "Measurement of Einstein-Podolsky-Rosen-Type Flavor Entanglement in  $\Upsilon(4S) \rightarrow B^0 \overline{B}^0$  Decays", *Phys. Rev. Lett.*, vol. 99, p. 131802, 2007.
- [13] J. Ellis, J. S. Hagelin, D. V. Nanopoulos, and M. Srednicki, "Search for violations of quantum mechanics", *Nucl. Phys. B*, vol. 241, p. 381, 1984.
- [14] J. Ellis, J. L. Lopez, N. E. Mavromatos, and D. V. Nanopoulos, "Precision tests of CPT symmetry and quantum mechanics in the neutral kaon system", *Phys. Rev. D*, vol. 53, p. 3846, 1996.
- [15] R. Adler *et al.*, "Tests of CPT symmetry and quantum mechanics with experimental data from CPLEAR", *Phys. Lett. B*, vol. 364, p. 239, 1995.
- [16] J. Bernabeu, N. Mavromatos, and J. Papavassiliou, "Novel Type of CPT Violation for Correlated Einstein-Podolsky-Rosen States of Neutral Mesons", *Phys. Rev. Lett.*, vol. 92, p. 131601, 2004.

- [17] F. Ambrosino *et al.*, "First observation of quantum interference in the process  $\phi \to K_S K_L \to \pi^+ \pi^- \pi^+ \pi^-$ : a Test of quantum mechanics and CPT symmetry", *Phys. Lett. B*, vol. 642, p. 315, 2006.
- [18] J. Bernabeu, A. Di Domenico, and P. Villanueva-Perez, "Direct test of time reversal symmetry in the entangled neutral kaon system at a φ-factory", *Nucl. Phys. B*, vol. 868, p. 102, 2013.
- [19] J. Bernabeu, A. Di Domenico, and P. Villanueva-Perez, "Probing CPT in transitions with entangled neutral kaons", *J. High Energy Phys.*, vol. 10, p. 139, 2015.
- [20] A. Di Domenico, "Testing discrete symmetries in transitions with entangled neutral kaons", *Acta Phys. Polonica B*, vol. 48, p. 1919, 2017.
- [21] P. Zyla *et al.*, (Particle Data Group), "Review of Particle Physics", *Prog. Theor. Exp. Phys.*, vol. 2020, p. 083C01, 2020.
- [22] M. Antonelli *et al.*, "An evaluation of  $|V_{us}|$  and precise tests of the Standard Model from world data on leptonic and semileptonic kaon decays", *Eur. Phys. J. C*, vol. 69, p. 399, 2010.
- [23] M. Moulson and E. Passemar, "Status of  $|V_{us}|$  determination for kaon decays", in *Proc. 10th Int. Workshop on the CKM Unitarity Triangle*, University of Heidelberg, Germany, Sep., 2018. doi:10.5281/zenodo.2565479
- [24] E. Blucher and W.J. Marciano, "V<sub>ud</sub>, V<sub>us</sub>, the Cabibbo angle, and CKM unitarity", in The Review of Particle Physics, (Particle Data Group), *Prog. Theor. Exp. Phys*, vol. 2020, p. 083C01, 2020.
- [25] C.-Y. Seng, D. Galviz, W. J. Marciano, and U.-G. Meissner, "Update on |V<sub>us</sub>| and |V<sub>us</sub>/V<sub>ud</sub>| from semileptonic kaon and pion decays", *Phys. Rev. D*, vol. 105, p. 013005, 2002.
- [26] F. Ambrosino *et al.*, "Study of the branching ratio and charge asymmetry for the decay  $K_S \rightarrow \pi e \nu$  with the KLOE detector", *Phys. Lett. B*, vol. 636, p. 173, 2006.
- [27] D. Babusci *et al.*, "Measurement of the branching fraction for the decay  $K_S \rightarrow \pi \mu \nu$  with the KLOE detector", *Phys. Lett. B*, vol. 805, p. 135378, 2020.
- [28] J.R. Batley *et al.*, "Determination of the relative decay rate  $K_S \rightarrow \pi e \nu/K_L \rightarrow \pi e \nu$ ", *Phys. Lett. B*, vol. 653 p. 145, 2007.
- [29] D. Babusci *et al.*, "Measurement of the  $K_S \rightarrow \pi e \nu$  branching fraction with the KLOE experiment", *arXiv preprint*, arXiv:2208.04872, submitted for publication.
- [30] W. J. Marciano and A. Sirlin, "Radiative Corrections to  $\pi_{\ell 2}$ Decays", *Phys. Rev. Lett.*, vol. 71, p. 3629, 1993.