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Accelerators at the Inter University Accelerator Centre
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Schematic of the High Current Injector

15UD Tandem
Accelerator

superconducting
LINAC, B ~0.08

super-
buncher

O HHOHHH

re-buncher

RFQ DTL
0.02-0.06
4

HIGH CURRENT INJECTOR

3/4/2025 G.RODRIGUES, IUAC, NEW DELHI



Layout of High Current Injector (HCI) Beamline
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High Current Injector: View of the 18 GHz HTS ECR ion Source coupled to LEBT
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High Current Injector: View of the sub-systems on 200 kV HV Platform
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Energy gain, Energy per nucleon : High Current Injector + SC LINAC
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User Community of TUAC, New Delhi

The ever-growing user
community of IUAC
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SOME GENERALITIES
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Scheme for basic collision-
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1 The charge state of heavy ions in cold matter (solid and gas targets) has
been studied over a long period of time theoretically as well as
experimentally

(] Due to the high densities of the solid targets, an equilibrium charge state is
usually reached after a short distance.

d Many experimental data have been collected and several empirical and
semi-empirical formulas have been developed to estimate the charge state
of the projectile as a function of its velocity and its atomic number with a
very good agreement with the data at high velocities.

(J A few codes are also available to calculate the charge state distribution
and/or ionization & recombination cross sections, determining charge state
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** How to achieve stripping of ions using a plasma ?

**ECR sources generally do not make high density plasma
because of the microwave cutoff at the plasma frequency. The
plasma density does not increase much beyond cutoff. (The
power efficiency of these plasma sources are never 100%,
because of the line radiation associated with the gas used to
make the plasma)

**Need to go for high power pulsed devices which can achieve
very high densities

*** Inductive plasmas are the only option

3/4/2025 G.RODRIGUES, IUAC, NEW DELHI




“*In plasmas and cold matter, charge states of a projectile
ions are determined are determined by ionisation and
recombination processes in the target

“*Cross sections for electron capture in plasmas are much
smaller than those in cold matter because there are
fewer bound electrons in the plasma.

“*Therefore, ions in a highly ionised plasma can reach
much higher states than in cold matter(Here, a hydrogen
plasma is most suitable)

(For projectile energies > 0.1 MeV/u, cross sections for
bound electron capture and radiative electron capture
increase as the projectile energy decreases)
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“*In “lonized matter”, energy loss processes are dominated by collisions
between the heavy ions and free electrons in the plasma

“*Direct capture of a free electron into a moving projectile violates the
simultaneous fulfillment of energy and momentum conservation

“*Therefore the above process is greatly reduced compared to the capture
of bound electrons

“*Need low Z, highly ionised species, H plasma !
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Bethe-Bohr-Bloc Stopping Theory

effective projectie
charge

bound electron contribution

free electron contribution
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Stopping Power for cold gas and plasma
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FOIL/GAS STRIPPING Vs PLASMA STRIPPING

» Gas stripping does not reach sufficiently high charge states

» Foil strippers have difficulties in long lifetime
(radiation damage, sputtering, thermal and mechanical stresses due to irradiation,

quality of ion beams is degraded more than from gaseous media)
» Plasma stripping (can solve) solves both the problems very well

Thomas Peter & Jurge Meyer-ter-Vahn, Phy.Rev.A, Vol.43, No.4, 1998
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DIELECTRIC THEORY OF STOPPING POWER

The stopping power of an ion is the force F that the
ion experiences from its own induced field:

1 |
P
dE ——F'e =Zeﬂ'e l

dx . = ax r=v_t .
‘ | r VPI p

(17)
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> In the last three decades, a few experiments to measure the energy
loss and the charge state of heavy ions traveling through ionized
matter have been carried out

> In these experiments, two main effects of the ionized matter have
been confirmed:

» the Enhanced Plasma Energy Transfer (EPET), which means a larger
energy loss of ions in plasmas than in cold matter due to a more
efficient energy transfer to the free electrons, and the Enhanced
Projectile lonization in Plasma (EPIP), which means a higher
projectile charge state in plasmas than in cold matter mainly due to
the reduction of capture cross sections with target free electrons.
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SOME BACKGROUND INFO ON FUSION STUDIES

** Many of the experiments in controlled thermonuclear fusion were z pinches
** They were highly unstable to the m=0, m=1 and the Rayleigh —Taylor instability

+» Addition of axial magnetic field and removal of end losses to a toroidal geometry led
to TOKOMAKS and reversed field pinch

s At fusion temperatures and practical values of magnetic fields, this restricts the
plasma density to 10%° to 10?!/m3 and containment time of several seconds with

plasma radius of 1 m

+» Studies on plasma focus (similar to Z pinch) has shown achievable plasma densities of
10%°/m3 and temperature of 1 keV in a narrow filament of radius 1 mm

¢ It has enhanced stability properties and very suitable for ion stripping

\
1 24
’ A
“* Development of high voltage, high current pulse technology to attain dense fusion E\%V
24

plasmas
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Z/0 PINCH PLASMAS
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a~ | (mA)=1.4x10"" r (cm)\/ n (cm>)T (keV)

2 5
n.~ 10 em3, .~ 5 keV, r,~ 1 mm, I.~1 mA 5( 3.5}1
W
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Sausage or pinch instability

B weak B(a1)

strong B(a,)
4&. @ i 3 Plasma
Plasma
— ] -
a) z- pinch W

Helical kink instability

B;\ .-\,.\ weaker B
J JJ

b) 6 - pinch . stronger B
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Z Pinch Device

Z-pinch configuration has many appealing features

The Z-pinch has the simplest geometry of any magnetic confinement

configuration:

oy ap B d(rB)
* cylindrical plasma column o =— J
* directly driven axial current r Holar

self-generated magnetic field compresses the plasma
perfect utilization of the magnetic field for compression, f=100%
no magnetic field coils: greatly reducing cost, size, and complexity

increasing the current generates higher plasma parameters,
increased fusion production, and smaller plasma radius

B

Y V VY

U.Shumlak, J. Appl. Phys. 127, 200901 (2020); https://doi.org/10.1063/5.0004228
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U Generally, in pinch devices, the current is generally provided from a large bank of capacitors and triggered by a
spark gap, known as a Marx Bank or Marx Generator.

[ Its purpose is to generate a high-voltage pulse from a low-voltage DC supply.

0 The circuit generates a high-voltage pulse by charging a number of capacitors in parallel, then suddenly
connecting them in series.

Marx Generator (Discharging)

A
f@ﬁ?ﬁ
(I
\
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PHASE SPACE DIAGRAM
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Thomas Peter & Jurge Meyer-ter-Vahn, Phy.Rev.A, Vol.43, No.4, 1998
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e Z pinch is one of the first concepts to be investigated as a
potential fusion device, and the various embodiments were
found to be susceptible to instabilities that severely limited the
plasma lifetime.

A dense plasma focus facilitates fusion reactions through a Z-
pinch effect, but the reactions primarily rely on instabilities to
produce large axial electric fields that accelerate ions and

produce short-lived beam-target fusion
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CURRENT STATE OF THE ART

Z pinch plasma ---disadvantage is the electrode erosion
effect and lifetime is reduced

Induction ignition of plasma ----an axial magnetic field
extends

IAP at University of Frankfurt —researching on various
alternatives to Z pinch (spherical theta pinch and spherical
screw pinch experiments were performed)
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ESTIMATES OF THE FLYCHK CODE

Ny=(1.9%0.7) - 1017 cm-3 at T,=
leVand N=1.9-1016 cm-3

A
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THETA PINCH DEVICE (IAP, FRANKFURT)

e Minimum breakdown condition is dB/dT ~ 108 G/s
e =>dB/dT ~ 10 mT/us
* Most “theta” pinch devices operate from 1 T/us to 100 T/us

Courtesy: J.Jacoby (IAP, Frankfurt)
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TEST SET-UP FOR “FAIR” PROJECT

harge state distribution of a 3.6 MeV/u
Au26* beam after passing through a
ydrogen plasma in comparison to a cold
gas

photo diode “ automatic pressure controller

full range display

[ Jcold gas
. L |plasma

View of the Spherical Theta Pinch device : ‘ _
beam tests at GSI, Darmstadt, Germany i s

uu L Ly

DL B LI LA DL B Ll L B B B |
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

Courtesy: J.Jacoby (IAP, Frankfurt) A
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DENSE PLASMA FOCUS

A Dense Plasma Focus (DPF) is a device that

produces, by EM acceleration and A Dense Plasma Focus Device
compression, short-lived plasma that is so Cathode

hot and dense that it becomes a copious ::vsj:tor “‘
multi-radiation source. The EM compression s Beam of X-rays
of the plasma is called a “pinch” Anode

Air-gap

Pulsed high voltage applied to a low

pressure gas between co-axial cylindrical Capacrtor Bank
electrodes generating short duration, (~ 10
— 50 ns) high density plasma (10'° cm-3)

3/4/2025 G.RODRIGUES, IUAC, NEW DELHI




DENSE PLASMA FOCUS

gas at several torrs

gas at several torrs

acitor bank filament

electrodes filament

insulator electrodes capacitor bank insulator

A
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Courtesy: R. Verma, S.K.Sharma, A.Sharma (BARC)
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Radial Compression Phase and Plasma Characteristics

Plasma Characteristics at Compression:
- density: 101” ions/cm?

- electron temperature: 0.5-1 keV

- time of compressed phase: 20-500 ns

:Focussing stage

?

Anode

£ . £ .. :

- 23 Plasma Characteristics at Fusion:
fé E - density: 1022-24 jons/cm?
= E : - electron temperature: 3-10 keV

- time of 10n acceleration: 1-5 ns
- abundant production of MeV 1ons, and hard X rays

e
| I"mm — O. 12(1 tcomp — 4.5a , i }2%
_ r . . =2a %‘ B SV
Courtesy: R. Verma, S.K.Sharma, A. Sharma (BARC) 2o = 0861 pinch \
38
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GENERIC TOPOLOGIES OF PLASMA FOCUS

Nicolai and Tatiana FILIOPPOV (1961/62) J oseliih MATHER (}995,4)
linear ‘ /
Filippov-type — i zg
™l £
"~
A —— =1 I <
£ o _ 23 [5 S0
s, £ 2|2 g 2
% il R
Ge .2 = 5 =]
F R L P |t & & moh
L — INSULATOR ol 2 =% / ' T__/.—S ! £ ;5.&
(L F-9
1 ls 13 AR >1
Fillipov Mather -+

AR< 1

50 kJ 1MJ 50 kJ 1MJ
Central electrode dia. [m] 0.5-0.7 09 0.04-0.08 | 0.16-0.25
Central electrode length [m] 0.12 0.26 0.2-0.3 0.5-0.6
D, gas Pressure [Torr] 0.5-2 1-3 3-8 5-10
Voltage [kV] 15-20 15 25-40 40-50
[Neutron yield [per pulse] (1-3)= 10 10 10"°-10"! (2-5)« 10*
PP Inductance [nH] 20 24 50 80
Pinch current [MA] 0.7-0.9 2-3 0.7-0.9 2-3

, il AV \7
“Aspect Ratio (AR) is defined as the ratio of the height to the diameter of the anode” _ I

Courtesy: R. Verma, S.K.Sharma, A. Sharma (BARC)
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INSIGHT FROM THE STUDY OF NEUTRON YIELD SCALING LAWS

An in-depth systematic study has been carried out over wide ranges of energy; optimizing pressure,
anode length and radius, to obtain scaling laws:

LogY, vs LogE,, for low E; and high E,
Yn VS lpinch (higher line), Y, Vs lpeak (lower line) 10000.0 el St S B L —

10000.0 -

y = 10" 1000.0 /

i

100.0 |

100.0 | 00 y = 0.29x"% |

= 7x107"%¢°
Y 10.0 - y =0.2x>"

T 1 1.0 ' ; T T :r
100 ////000 10000 Y 10 100 1000 10000 100000
0.1 |

0.0 -

LogY,, Y,in 10210

1.0

Log Yn, Ynin 10"

Logl, linkA 0.0

Log Ey, EginkJ
Y, = 3.2x10% ;4
(Iyinch is in MA in the range of 0.2 to 2.4 MA)

Y, = 1.8x10%] ., 32

(Ioeak is in MA in the range of 0.3 to 5.7 MA)

iy
’ A A
Y, ~ E,2 from tens of kJ to Y, ~ E,%84 to M/ level :[‘

Courtesy: R. Verma, S.K.Sharma, A. Sharma (BARC)
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PLASMA FOCUS ELECTRODE PARAMETERS

Courtesy: R. Verma, S.K.Sharma, A. Sharma (BARC)

i » I - Peak discharge Current :
% > t;,, - Quarter time period of the discharge current signal
z, . » L, — System Inductance
Zli ' 1. Anode radius (a) 2. Anode length (z,)
N Speed factor Typical velocities in
. >lea ) )
{-f_ (90 kA/cm/torr!’2) axial and radial phases
Focus tube v, 10 cm/us, v : 25 cm/us
assembly : 1
.................................... )
:a —Anode radius : I,/ ap : z, =v,{t,,,—(am,)}
EZa—Anode length O

: b — Cathode radius : _
] : 3. Cathode radius () Ly2L, L,=u/27in(b/a)xz,
: Z, — Insulator length :

L, —Inductance of :
focus tube : 4. Insulator length (z) «




Courtes

DD neutron yield per pulse

Neutron energy (DD)
Neutron pulse duration
Plasma focus head

Total energy stored
Total capacitance
Charging voltage
Energy transfer switch
Peak discharge current
Eq. circuit inductance

Eq. circuit resistance

Anode length
Anode radius
Cathode radius
Insulator length

Insulator material

Size of plasma focus head
Overall weight of system
Overall size of the system

3/4/2025

> 1x10° neutrons/pulse (average)
~2.45 MeV (typical)

~50 ns (typical)
Replenish-able & Demountable

10 kJ (maximum)

50 pF (12.5 pF % 4 Nos.)

20 kV (maximum)
Pseudospark Switch (x 4 Nos.)
600 kA (maximum)

~140 nH

~33 mQ2

120 mm

20 mm

50 mm

30 mm
Quartz Glass

0.2 m (¢) x 0.3 m (h)
300 kgs (approx.)
I.5Smx1mx0.7m

: R. Verma, S.K.Sharma, A. Sharma (BARC
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THE PLASMA FOCUS ELECTRODE ASSEMBLY

A figure of merit that is used to express material erosion resistance is called ‘IMPULSIVITY (M)’

M = Tmelting (Z( I[l) C;)l/z

/ N\
Thermal conductivity Specific heat
density
= : i ' Materials M (J/cm?sec’12)
E= - ! "' Tungsten 7000
(.- ¥ | .
| ,\& ."_”_‘_ B ' ’ Graphite 5700
% Anode - Elkonit
Cathode = Brass Molybdenum 4800
Pinsulator — QuartZygy Copper 4000
= WHY......?2???
Stainless steel 1530
Courtesy: R. Verma, S.K.Sharma, A. Sharma (BARC) Sl S0
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Courtesy: R. Verma. S.K.Sharma, A. Sharma (BARC)



Time resolved radiation measurements

' H Scale: 100 ns/div
V Scale: 500 mV/div |
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“Time resolved oscilloscope traces of two identical scintillator photomultiplier detectors
kept at distance of ~4m (side-on) from PF device (TOF ~185ns)”
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« 15 UD/16 MV Tandem Pelletron Accelerator energy is
boosted by the existing Super-Conducting Linear
Accelerator operating at 97 MHz (energy input is 1.8
MeV/amu)

* High Current Injector will accelerate highly charged ions
into the Super-Conducting Linear Accelerator operating
at 97 MHz

* The output beam of final energy of 1.8 MeV/amu of HCI
is similar to the output of the Pelletron Accelerator.

* In long term, HCI will operate as a parallel injector to
Super-Conducting Linear Accelerator
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For the HCI, since the Multi-Harmonic Buncher is operational
frequency at 12.125 MHz, the pulse to pulse separation is ~
82.47 ns

Bunchers are positioned all along the HCI beamline to preserve
the bunch width, typically better than 1 ns to match with the
super-buncher requirements (positioned just before entrance
of SC-LINAC) for further acceleration into the SC-LINAC
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Layout of High Current Injector (HCI) Beamline

ECR ion source
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Foil/Gas Strippers
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* Possibility of a plasma based stripper or hydrogen gas stripper
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Conclusions

* A more stable pinch device is proposed and developed without magnetic field
with densities ~ 10'° cm=3 characterized in the time scale of 10 to 50 ns.

« A 100 % fully ionized plasma is extremely important.

* Electrical optimizations (if required) may need to be planned to increase the
discharge energy as well as the efficiency of the stripper cell.

* Initial Beam tests of the Dense Plasma Focus cell using heavy ions are planned
this year end at IUAC, New Delhi

 Development of optical diagnostics for spatially and temporally resolved
measurement of electron density

* Development of real-time monitoring of discharge parameters by interferometry

* Increasing the repetition rate (if required), and final beam tests with optical
diagnostics
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