¢
I

JYVASKYLAN YLIOPISTO
UNIVERSITY OF JYVASKYLA

Time-resolved measurement of ion beam
energy spread variation due to kinetic
plasma instabilities in CW and pulsed

operation of an ECRIS

Ville Toivanen

Juuso Huovila, Hannu Koivisto, Olli Tarvainen



Outline [

Introduction - energy spread < plasma potential
Kinetic plasma instabilities - a quick reminder

Experimental method for time-resolved measurement of energy spread variation during an
instability event

Data analysis; an example with some considerations
Results

CW operation with different plasmas

Pulsed operation with varied ECRIS magnetic field
Implications and consequences for ECRIS operation

Summary and conclusions

2 16.9.2024 JYU SINCE 1863.



Introduction and motivation %

Energy spread: relevant when assessing the quality of beams — beam transmission, application/user
requirements

Stable plasma: electrostatic focusing effects during beam formation (extraction geometry, plasma-beam
boundary) are dominant factors determining the beam energy spread [1]

During kinetic plasma instabilities the situation changes drastically
Instability onset is characterised by sudden increase of plasma potential (~two orders of magnitude)
Plasma potential becomes the dominant factor defining the energy spread of extracted beam

Measurement of energy spread during instability = diagnostic to probe the influence of instabilities on the
plasma potential

Magnitude, time scales, possible temporal patterns, other characteristics

New insight into instability related ECR plasma physics

[1] J. Angot, O. Tarvainen, P. Chauveau, S.T. Kosonen, T. Kalvas,T. Thuillier, M. Migliore and L. Maunoury, "The longitudinal energy spread of
ion beams extracted from an electron cyclotron resonance ion source", JINST 18 (2023) P04018. doi:10.1088/1748-0221/18/04/P04018
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Energy content
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Kinetic plasma instabilities - a quick reminder
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ECRIS plasmas are strongly anisotropic, consisting of cold and hot electrons = non-equilibrium plasma, prone
to kinetic (maser-type) instabilities driven by hot electron population
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Kinetic plasma instabilities - a quick reminder %

Instabilities can occur both in CW and pulsed operation modes

CW operation:
Plasma heating and confinement leads to build-up of hot electron population Ne hot T
— onset of instability Ne cota

Pulsed operation:

During the plasma decay following the uW switch-off, the loss rate of cold Ne hot
electrons is higher than the better confined hot electrons — onset of Ne cota l
instability

Conseqguences: oscillation of beam current and beam energy, limitation of parameter space for source
performance optimization, decreased beam transmission efficiency, increase of beam impuirities, ...
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Experimental method and setup

Main idea: dipole magnet used as an energy analyzer for extracted ion beam

Temporal evolution of beam current recorded at different dipole B fields

Energy spread increase during instability causes beam current to "spread” momentarily to higher B fields

Dipole B field scan ¢ scan of energy variation of the ion species of interest

Data combined to reveal energy spread variation

Repetitive measurement process — automatisation 222
— MSc thesis of J. Huovila [1] 200
) 150

g 100

CW and pulsed operation: a choice of trigger signal = 50
CW operation: x-ray or uW bursts from plasma _52
Pulsed operation: leading or trailing edge of uW pulse -100

[1] J. Huovila, MSc thesis, University of Jyvaskyla (2023). http://urn.fi/URN:NBN:fi:jyu-202305022805
[2] O. Tarvainen et al., "Limitation of the ECRIS perfor-mance by kinetic plasma instabilities", Rev. Sci. Instrum. 87 (2016) 02A703.
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Experimental method and setup %

Experiments performed on JYFL 14 GHz ECRIS el
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Experimental method and setup

Experiments performed on JYFL 14 GHz ECRIS

A dedicated computer runs the measurement
procedure and data acquisition

Controls uW pulse pattern and dipole sweep
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Experimental method and setup
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Experiments performed on JYFL 14 GHz ECRIS
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procedure and data acquisition

Controls uW pulse pattern and dipole sweep

Klystron output signal to trigger and synchronize
data acquisition
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Experimental method and setup
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Experiments performed on JYFL 14 GHz ECRIS
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Experimental method and setup

12

Experiments performed on JYFL 14 GHz ECRIS

A dedicated computer runs the measurement
procedure and data acquisition

Controls uW pulse pattern and dipole sweep

Klystron output signal to trigger and synchronize
data acquisition

Dipole B field measured with a Hall probe

Temporal evolution of beam current measured
with Faraday cup through a TIA

X-ray scintillator to monitor x-ray bursts from
plasma (correlation with instabilities)

HV probe to monitor source potential
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Data analysis - possibilities and challenges .

The onset of kinetic instability influences the whole plasma ion
Oxygen CSD

0% o5+

population — freedom in choosing the studied ion species L1

1.0
0.9 -
0.8 -
0.7 AB
0.6 - O3+
0.5
0.4 O7+ O3+

Lower charge states are preferable, because they have the wider 03 AB '
0.2

separation from neighboring charge states 0.1 o8+ N
0.0

Main challenge: overlap with neighboring species at higher B field
— limits measurable energy spread increase

Normalized beam current

| 1 1 | L I | 1 1 |

20 25 30 35 40 45 50 55 60 65 70 75 80 85
Dipole B field [mT]

Impurities pose additional challenge by limiting free B field regions

AB = Available space to measure current
"spreading” during instability to determine
energy spread increase for O°" and O3*
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Beam current [a.u.]

Data analysis - an example for pulsed operation %
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Oxygen plasma, 300 W microwave power, B, ;. /B¢ = 0.67, 10 kV extraction

Independent beam current traces measured with varied dipole B fields,
microwave switch-off at t=0

Traces on the left: measured at dipole field corresponding to the center of
the 1O3* beam (bottom plot) and at two higher dipole fields

Instability transient (peak) in beam current has a time scale of a few
microseconds

Delay time ( t,,,, ) from the microwave switch-off to the occurrence of the
first instability event is very repeatable pulse-to-pulse

But: a few discrete patterns of consecutive instability events are observed
Top and bottom plots — pattern 1
Middle plot — pattern 2
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Beam current [a.u.]

Data analysis - an example for pulsed operation %
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Beam current [a.u.]

Data analysis - an example for pulsed operation %
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Beam current [a.u.]

Data analysis — an example for pulsed operation
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Results - CW operation .
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[1] O. Tarvainen et al., "Limitation of the ECRIS perfor-mance by kinetic plasma instabilities", ug’ 160: O 3 | 0.8
Rev. Sci. Instrum. 87 (2016) 02A703. F 50 |- AE/E 25% 1| %4
[2] O. Tarvainen et al., "The biased disc of and electron cyclotron resonance ion source as a 0k i I 0.3
probe ofinstability-induced electron and ion losses", Rev. Sci. Instrum. 90 (2019) 123303. & 4 0.2
-50 - N c 1F1 o1
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Results - pulsed operation

Oxygen plasma, 300 W uW power (1 Hz, 50% duty
cycle), varied B field

Two regions for AE/E behaviour:

B,.i/Becr < 0.76
Stable plasma during uW pulse
AE/E increase 251% — AV, 25.1 kV
Still lower limit values due to overlap!

B,.../Becr > 0.76
Plasma becomes unstable during uW pulse
Significant drop in AE/E increase (15% and 4%)

Instability provides a channel for the plasma to
expel energy during the uW pulse = mitigates the
energy released during plasma decay
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Results - pulsed operation

Delay time to 15t instability decreases with increasing
B,.i/Becr ratio

Agrees with previous pulsed operation instability
experiments based on x-ray and microwave emissions [1]

Decrease in delay is associated with increased density and
anisotropy of hot electrons due to enhanced heating with
lower B field gradients at higher B,... /Brc

Delay decreases also when plasma is unstable during uW
pulse = ratio of hot to cold electron densities triggers
instability onset, not plasma energy content (which
presumably is decreased with unstable plasma)

[1] I. Izotov et al., "Cyclotron instability in the afterglow mode of minimum-B
ECRIS", Rev. Sci. Instrum. 87 (2016) 02A729.
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Implications/consequences for ECRIS operation %

14.5 GHz PHOENIX CB-ECRIS
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[1] V. Toivanen et al., "Diagnostic techniques of minimum-B ECR ion 0.2 - A O . 20r Ari3+ ]
source plasma instabilities", Rev. Sci. Instrum. 93 (2022) 013302. A a 10 " Ar15+ Arté+ 7
[2] O. Tarvainen et al., "Plasma instabilities of a charge breeder ECRIS", o 4 A 0 S \\J |
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Implications/consequences for ECRIS operation Vi

Desorption of impurities from chamber walls

Energetic ion bombardment releases impurities 1 1‘1‘% siHz PHOENIX CB-ECRIS , o
from the walls into the plasma = CSD z °°F Unstabls |
contamination g Zj
An example: unstable vs. stable plasma operation of %2
PHOENIX CB-ECRIS [1,2] K
An order of magnitude increase in impurity 2 ‘ . . .

1603+ 12C2+ 14N2+ 1602+

currents in the extracted n+ ion beam

Impurity peaks correspond to elements from the
structures surrounding the plasma

40Ar6+

Current [nA]
o
o [6)] -
:
g?
iy

[1] O. Tarvainen et al., "Plasma instabilities of a charge breeder ECRIS", Plasma
Sources Sci. Technol. 26 (2017) 105002.

[2] O. Tarvainen et al., "The effect of plasma instabilities on the background
impurities in charge breeder ECRIS", AIP Conf. Proc. 2011 (2018) 070006.
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Implications/consequences for ECRIS operation %

GTS-LHC plasma chamber

Chamber erosion
Energetic ions sputter the structures around the plasma

Prolonged (pulsed) operation can lead to significant structural
degradation

An example: 6 month argon operation of CERN GTS-LHC in
pulsed afterglow mode [1]

100 um deep sputter marks
Fe seen in CSD (SS chamber)

Coating of insulators

[1] D. Kuchler et al.,"Never run your ECR ion source with
argon in afterglow for 6 months!", in Proc. ECRIS’16, Busan,

Korea, Aug. 2016, p.WEPPO03, ISBN 978-3-95450-186-1.
Values amplified by a factor of 100
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Summary and conclusions %

Plasma potential experiences a significant increase at the onset of kinetic instability

The absolute values still remain elusive, but experiments show that they can be >1.5 kV in CW operation
and >5.1 kV in pulsed operation

The energy spread of the extracted beam increases accordingly (215% in CW, >51% in pulsed operation)
One should be aware of this phenomenon, as it can influence the ECRIS operation
Degraded performance, increase of impurities, chamber erosion, momentary loss of beam transmission

In pulsed operation experiments instabilities were observed with all ECRIS settings, suggesting that
instabilities could be present always in pulsed operation

The method presented here has challenges (overlap) but is still promising for further use/development
Improve conditions, limit impurities

Room for further experiments; more parametric studies, characteristics of subsequent instability events, ...
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