26th International Workshop on ECR Ion Sources – 17/09/2024

Simulation of Bremsstrahlung emission in ECRIS and its dependence on the magnetic confinement

A. Cernuschi¹ and T. Thuillier¹

¹LPSC - Université Grenoble Alpes

Outline

- 1) Introduction:
 - a) Scientific context.
 - b) ASTERICS source.
- **Objective and methodology.** 2)

Results of electron behaviour study: 3)

- a) Electron density and distribution.
- b) Electron energy distribution.
- Electron velocity and energy spatial distribution. c)

Results of bremsstrahlung emission study: 4)

- a) Photon count rate.
- Photon directionality. b)
- Photon energy distribution. c)

Conclusions. 5)

Effect of minimum magnetic field on bremsstrahlung

Dependence of the Bremsstrahlung Spectral Temperature in Minimum-B Electron Cyclotron Resonance Ion Sources

J. Benitez, C. Lyneis, L. Phair, D. Todd, D. Xie

Measured photon spectral temperature in ECRIS is **only** a function of the **minimum magnetic field** B_{min} .

120 50 45 100 Dependence of Dependence 40 photon spectral of photon 80 35 temperature (T_s) spectral T_s (keV) ۲^s (keV) on **minimum** temperature 30 (T_{c}) on magnetic field 25 40 (B_{min}) magnetic field 20 I 14 GHz 20 gradient at 18 GHz 15 28 GHz ECR zone 0 10 0.2 0.4 0.8 0.6 0 -0.055 -0.06 -0.065 -0.07 -0.075 -0.08 -0.05 B_{min} (T) Injection Side Gradient at B_{ECR} (T/cm)

Benitez et al. (2017), IEEE transaction on Plasma Science.

Anisotropic bremsstrahlung emission

Correlation of bremsstrahlung and energy distribution of escaping electrons to study the dynamics of magnetically confined plasma

B S Bhaskar^{1,2,*}, H Koivisto¹, O Tarvainen^{1,3}, T Thuillier², V Toivanen¹, T Kalvas¹, I Izotov⁴, V Skalyga⁴, R Kronholm¹, and M Marttinen¹

Measured X-ray photon spectral temperature much higher in radial direction than axial one at î E_{ph}.
 ➢ Anisotropic electron energy distribution function (EEDF).

CREMORE I MODANE

Recent simulation of ECRIS behavior

Numerical investigations of the minimum-B effect in Electron Cyclotron Resonance Ion Source

━ |

V. Mironov, S. Bogomolov, A. Bondarchenko, A. Efremov, V. Loginov, D. Pugachev

NAM-ECRIS: 2 iterative 3D code to **separately simulate** electrons (*e*⁻) and ion dynamics.

- e^- distribution \rightarrow Colder dense core + Hotter dilute halo.
- $\widehat{D} B_{min} \rightarrow \widehat{D} e^{-}$ temperature (T_e) , more compact plasma in longitudinal direction.

ASTERICS ion source

ECRIS for the new GANIL injector (NEWGAIN) for A/Q ≤ 7 to the existing SPIRAL2 linear accelerator at the Grand Accelerateur National d'Ions Lourds (GANIL) facility.

Objectives and methodologies

Investigate **electron dynamics** inside ASTERICS ion source:

- Effect of magnetic field on **density, energy and velocity distributions**.
- Effect of magnetic field on volume **bremsstrahlung** emission.
- Study of the **anisotropic photon emission** inside ECRIS.

- Large cavity (15.6 dm³).
- Long timescale (1 ms).
- Hot non-collisional plasma ($T_e \approx 5-10 \text{ keV}$).

3D Monte-Carlo (MC) electron simulation.

Monte-Carlo code

E and *B* fields evaluation at *e*⁻ position

Bremsstrahlung emission

- 2D hexapolar magnetic field map + fringe field model.
- Axisymmetric 2D axial magnetic field map. \rightarrow Profiles:
- *28 GHz* microwave providing *7 kW* (planar wave approx.).

>	B _{ext} increases	B _{min} increases
	2.0 T – 2.2 T – 2.5 T	0.3 T – 0.6 T – 0.8 T

G

Université Grenoble Alpes

Results on electron behaviour

JG/

Electron density

Same results as complex simulations: **Dense** electron core, $\hat{D} B_{min} \rightarrow Plasma$ compression.

- Hot electrons in ECRIS marginally affected by plasma.
- > Dense plasma core volume scales with plasma chamber volumes.

Electron energy distribution (EED)

Grenoble Alpe

Electron velocity spatial distribution (EVSD)

Transversal profile \rightarrow 3 main regions:

- $r \leq r_{lim}$: e^{-} trapped in **axial trajectories**.
- $r_{lim} \le r \le r_{ECR}$: $\hat{\Gamma} \beta_{\perp}$ with $\hat{\Gamma} r$ due to $\mu_{av} \approx const.$
- $r \ge r_{ECR}$: Larger region for $\bigcirc B_{min}$.

Longitudinal profile:

- *e*⁻ velocity at extraction much higher than at injection.
- Inside ECR volume average adiabatic evolution of β_{\perp} and $\beta_{//}$.

General considerations:

• $\ \ D B_{ext} \rightarrow \ No \ significant \ effect.$

Grenoble Alpe

D → 1 velocities and profile modifications.

$$-\frac{B_{min} = 0.3 T}{B_{ext} = 2.2 T} - B_{min} = 0.3 T / B_{ext} = 2.2 T - B_{min} = 0.3 T / B_{ext} = 2.2 T$$

$$-B_{min} = 0.3 T / B_{ext} = 2.0 T - B_{min} = 0.3 T / B_{ext} = 2.5 T$$
Average velocity profile along x-axis at y=0 and z=z_min

$$0.20 - 0.05 - 0.00 - 0.05 - 0.10$$

$$0.40 - 0.05 - 0.00 - 0.05 - 0.10$$

$$-0.10 - 0.05 - 0.00 - 0.05 - 0.10$$
Average velocity profile along z-axis at x=0 and y=0

$$0.40 - 0.05 - 0.00 - 0.05 - 0.10$$

$$-0.05 - 0.00 - 0.05 - 0.10$$

$$-0.05 - 0.00 - 0.05 - 0.10$$

$$-0.05 - 0.00 - 0.05 - 0.10$$

$$-0.05 - 0.00 - 0.05 - 0.10$$

Electron velocity spatial distribution (EVSD, XZ plane)

 $\hat{U} B_{min} \rightarrow \hat{U} \beta_{\perp}$ in the whole plasma volume. > ↓ *ECR radius* with $\hat{U} B_{min} \rightarrow \hat{U}$ volume available for relativistic ECR heating.

Electron velocity spatial distribution (EVSD , YZ plane)

Electron energy spatial distribution (EESD)

Warm and Hot electrons

- Very similar density distribution.
- **\hat{\mathbf{I}}** normalized **density** for \mathbb{J} B_{min} . •

Very hot electrons

- $\square B_{min} \rightarrow e^{-}$ mostly around ECR zone.
- $\hat{}$ B_{min} → e^{-} distributed at $r_{lim} \le r \le r_{ECR}$ and î î normalized density.

G

Results on bremsstrahlung emission

Bremsstrahlung emission – Photon count rate (PCR)

• $\ \ B_{ext} \rightarrow \$ No significant effect.

• $\ \ B_{min}: \ \ PCR \rightarrow \text{Strong increase from } B_{min} = 0.7 T.$

G

Grenoble Alpes

Bremsstrahlung emission – Photon count rate (PCR)

- $\ \ B_{ext} \rightarrow \$ No significant effect.
- $\bigcirc B_{min}$: More **anisotropic** photon count in **radial** direction.

Count ratio:

PCR at radial wall per unit surface PCR at extraction wall per unit surface

Bremsstrahlung emission – Photon directionality

Bremsstrahlung emission – Photon energy spectrum

Bremsstrahlung emission – Photon energy spectrum

Photon energy spectrum change **only** with ΥB_{min} :

 $\hat{\mathbf{T}}$ Photon spectral temperature T_s . •

Bremsstrahlung emission – Photon energy spectrum

Photon energy spectrum change **only** with $\hat{U} B_{min}$:

• More **anisotropic** photon spectral temperature in **radial** direction at $\hat{U} E_{ph}$.

$$kT_s ratio = rac{T_{s,RADIAL}}{T_{s,AXIAL}}$$

Conclusions

MC code

- **Reproduce** results from more **complex simulation** with much **higher statistics**.
 - > Hot electrons behaviour marginally affected by plasma.
- Useful tool to investigate electron behaviour in the future ASTERICS ion source.

Bremsstrahlung emission simulations simulated for the first time directly inside MC

- ▶ $\hat{U} B_{min} \rightarrow \hat{U} T_s$ and \hat{U} photon count. $\boxed{\checkmark}$
- > î B_{ext} → No influence.

Possible explanation for dependence of hot electrons only on B_{min}

- > ↓ *ECR radius* with $\hat{U} B_{min} \rightarrow \hat{U}$ volume available for relativistic ECR heating.
- $\mu_{av} \approx const$ inside ECR volume $\rightarrow \Im \beta_{\perp}$ with \Im radius.

Thanks for the attention!

