Progress In 3D Self-Consistent Full Wave-PIC Modelling Of Space Resolved ECR Plasma Properties

A. Pidatella¹, A. Galatà², G. S. Mauro¹, B. Mishra¹, E. Naselli¹, G. Torrisi¹, D. Mascali¹ On behalf of the PANDORA collaboration

> ¹Istituto Nazionale di Fisica Nucleare – Laboratori Nazionali del Sud – Catania (Italy) ²Istituto Nazionale di Fisica Nucleare – Laboratori Nazionali di Legnaro– Padova (Italy)

CRIS24 - Darmstadt, Germany, September 15–19, 2024

ECR plasmas generated in ECR Ion Sources or Trap can be used to carry out fundamental research and to improve particle accelerators' performances

Models consistently describing the **plasma generation**/sustainment and the **particle/radiation interactions in plasma** are needed to constrain the ECR plasma physics and all processes occurring inside it

ECR plasmas properties are non-uniform, strongly inhomogeneous and anisotropic

SPECIFICALLY FOR ECRIS models can:

- Improve fundamental undertanding of ECRIS devices
- Couple with diagnostics for extracting plasma parameters and observables
- Investigating on plasma turbulences to mitigate ECRIS instabilities

BUT MORE IN GENERAL models can:

- Serve to multi-physics and multi-disciplinary experiments to complement the physics description
- Connecting laboratory ECR plasma theory and experiments...let's give an example...

PANDORA: an ECR Trap for Nuclear Astrophysics and Multi-Messenger Astronomy

PANDORA (*Plasmas for Astrophysics Nuclear Decays Observation and Radiation for Archaeometry*) **plasma trap** for inter-disciplinary studies: **atomic physics, astrophysics, and nuclear astrophysics**

- Nuclear bound-β decay rate in a high-energy content plasma for nuclei relevant in *s*-process branching Pidatella, A. *et al.*, Plasma Phys. Control. Fusion 66 (3), 035016 (2024) Mishra, B., *et al.*, Front. in Physics, 10, 932448, (2022) Galatà, A., *et al.*, Front. in Physics, 10, 947194, (2022)
- 2. Magneto-plasma opacity spectroscopic measurements relevant for KN light-curve and *r*-process nucleosynthesis yields Pidatella, A., et al. Nuovo Cimento 44 C (2021) 65 Pidatella, A., *et al.* Frontiers in Astronomy and Space Sciences, 10.3389/fspas.2022.931744 (2022)
- 3. Plasma kinetic turbulences and impact on astrophysics Mascali D., et al (2022) Plasma Phys. Control. Fusion 64 035020

Specific interest for PANDORA

Outline:

	VENUS	ASTERICS	unit
L	500	600	mm
R	72	91	$\mathbf{m}\mathbf{m}$
V	8.1	15.6	liters
B_{wall}	1.85	1.97	Т
L_{ECR}	178	205	$\mathbf{m}\mathbf{m}$
RECR	50	58	$\mathbf{m}\mathbf{m}$

T. Thuillier et al 2024 J. Phys.: Conf. Ser. 2743 012059

Simulations and results presented will refer to different ECR Ion Sources/Trap scenarios:

- ATOMKI, Debrecen (HU) ECRIS: 12.84 GHz, 200 W, B-min, L_{ECR}*R²_{ECR} ~ 11 cm³
- INFN-LNL, Legnaro (IT) ECRIS LEGIS: 14.428 GHz, 100 W, B-min, L_{ECR}*R²_{ECR} ~ 7 cm³
- INFN-LNS, Catania (IT) ECRIT PANDORA: 18 GHz, 5 kW, B-min, L_{ECR}*R²_{ECR} ~ 1400 cm³

ECR plasma modelling – pipeline

lasmas for

Astrophysics

Nuclear Decay Observation and Radiation for Archaeometry

In ECR magnetoplasma, electrons interact strongly with microwave radiation so full-wave PIC electron kinetics models are required. The plasma is NLTE so ion kinetics is studied using PIC-MC simulations that can solve Collisional-Radiative model

Plasma Electron Simulations - Overview

Electron density n_e (m⁻³) and mean energy E_e (keV) maps for the LEGIS source (INFN-LNL) obtained from PIC simulations.

ECRIS 24 - angelo.pidatella@lns.infn.it

Plasma Electron Simulations - Overview

Maxwell's eqs.

$\vec{\nabla} \times \vec{E}(\vec{r}) = -i\omega\vec{B}(\vec{r})$
$\vec{\nabla} \times \vec{H}(\vec{r}) = i\omega\varepsilon_0 \vec{E}(\vec{r}) + \vec{J}(\vec{r}) = i\omega\vec{\varepsilon} \cdot \vec{E}(\vec{r}) = i\omega \cdot \vec{D}(\vec{r})$
$\vec{\nabla} \cdot \vec{D}(\vec{r}) = \rho(\vec{r})$
$\vec{\nabla} \cdot \vec{B}(\vec{r}) = 0$

Constitutive relations

$$\vec{J} = \overline{\vec{\sigma}} \cdot \vec{E}$$
$$\vec{D} = \frac{\vec{J}}{i\omega} + \varepsilon_0 \vec{E} = \left(\frac{\vec{\sigma}}{i\omega} + \varepsilon_0\right) \vec{E} = \overline{\vec{\varepsilon}} \cdot \vec{E}$$
$$\vec{\overline{\varepsilon}} = \varepsilon_0 \left(\overline{\vec{I}} - i \frac{\vec{\sigma}}{\omega \varepsilon_0}\right)$$

 $m\frac{\partial \vec{v}}{\partial t} = \left(q\vec{E} + \vec{v} \times \vec{B}_0\right) - \omega_{\text{eff}}m\vec{v}$

Non-uniform local dielectric tensor

Uniform (top) vs. non-uniform tensor (bottom) wave-toplasma coupling

3D Cold plasma modelling: dispersive medium with collisions

Random thermal motion neglected

 $(v_{\phi} >> v_{th})$

COLLISION FREQUENCY ω_{eff} ACCOUNTS FOR THE COLLISION FRICTION, MODELS THE WAVE DAMPING AND RESOLVES THE SINGULARITY OF SOME ELEMENTS OF TENSOR

SOLUTION OF WAVE EQUATION WITH ADAPTIVE MESH IN FEM SOLVER

 Non-homogeneous dielectric permittivity tensor depends on local electron density and magnetic field

Plasma Electron Simulations - Overview

Particle Transport

Being charged particles, ions in an ECR plasma move under the influence of EM fields (self-generated and external) and undergo Coulomb collisions with other plasma species

EM transport

Magnetostatic field profile in the LEGIS

$$\frac{\mathrm{d}\mathbf{r}}{\mathrm{d}t} = \mathbf{v}$$
$$m\frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t} = q(\mathbf{E} + \mathbf{v} \times \mathbf{B})$$

Equation of motion for charged particles under Lorentz force

$$\mathbf{r}^{n+1} - \mathbf{r}^{n} = \mathbf{v}^{n+1/2}$$
$$\mathbf{u}^{-} = \gamma \mathbf{v}^{n+1/2} + \frac{q}{2m} \mathbf{E}^{n+1} T_{step}$$
$$\theta = \frac{q T_{step}}{m \gamma} |\mathbf{B}^{n+1}|$$
$$\mathbf{t} = \tan \frac{\theta}{2} \mathbf{b}$$
$$\mathbf{u}' = \mathbf{u}^{-} + \mathbf{u}^{-} \times \mathbf{t}$$
$$\mathbf{u}^{+} = \mathbf{u}^{-} + \frac{1}{2 + |\mathbf{t}|^{2}} (\mathbf{u}' \times \mathbf{t})$$
$$\mathbf{v}^{n+3/2} = \frac{1}{\gamma} (\mathbf{u}^{+} + \frac{q}{2m} \mathbf{E}^{n+1} T_{step})$$

0.6

0.5

Numerical implementation of Lorentz force using Boris method, with correction by Zenitani and Umeda

$$\mathbf{u}^+ = R_{rot}\mathbf{u}$$

J.P. Boris, Proc. 4th Naval Conf. on Numerical Simulation of Plasmas S. Zenitani and T. Umeda, Phys. Plasmas **25** (2018)

Collisions

Numerical implementation of Fokker-Planck equation using superpotential formalism by MacDonald and Rosenbluth

W.M. MacDonald, M.N. Rosenluth and W. Chuck, Phys. Plasmas **107**, 350 (1957) A. Galatà et al, Plasma Sources Sci. Technol. **25** (2016)

$$\begin{split} D_{||} &= \langle \mathbf{v}_{||}^{2} \rangle = \frac{A_{D}}{|\mathbf{v}^{n+1/2}|} G(\frac{|\mathbf{v}^{n+1/2}|}{c_{s}}) & A_{D} = \frac{(ZZ')^{2}e^{4}n_{s}\ln\Lambda}{2\pi\epsilon_{0}^{2}m^{2}} \\ D_{\perp} &= \langle \mathbf{v}_{\perp}^{2} \rangle = \frac{A_{D}}{|\mathbf{v}^{n+1/2}|} \left\{ \Phi(\frac{|\mathbf{v}^{n+1/2}|}{c_{s}}) - G(\frac{|\mathbf{v}^{n+1/2}|}{c_{s}}) \right\} \\ \nu_{s} &= \left(1 + \frac{m}{m_{s}}\right) \frac{A_{D}}{c_{s}^{2}} \frac{G(\frac{|\mathbf{v}^{n+1/2}|}{c_{s}})}{\frac{|\mathbf{v}^{n+1/2}|}{c_{s}}} & \mathbf{v}_{fric} = \nu_{s} \mathbf{v}^{n+1/2} T_{step} \\ \mathbf{v}_{rand} = P_{||} N(0, D_{||}) + P_{\perp} N(0, D_{\perp}) \end{split}$$

$$\mathbf{v}^{n+3/2} = \frac{1}{\gamma} (\mathbf{u}^+ + \frac{q}{2m} \mathbf{E}^{n+1} T_{step}) + \mathbf{v}_{fric} + \mathbf{v}_{rand}$$

Plasma Ion Simulations - Overview

Plasmas for Astrophysics Nuclear

Decay Observation and Radiation for Archaeometry

PIC simulations for ECR plasma ions:

- Description: Steady state electron maps + *Balance equation*
- Scaling: Quasi-neutrality with electron density
- Self-consistency: Electron density and energy maps

B. Mishra *et al*, Front. Phys. **10**, 932448 (2022) B. Mishra, EPJ WoC **275**, 02001 (2023)

Plasma Ion Simulations - Modules

Plasmas for Astrophysics

Nuclear

Decay Observation and Radiation for Archaeometry

ECR plasma ions can be simulated PIC-MC codes, which evolve the density maps of successive ionization stages self-consistently with electron density and energy maps given as input B. Mishra et al, Front. Phys. **10**, 932448 (2022) B. Mishra, EPJ WoC **275**, 02001 (2023)

Plasma Ion Simulations - Modules

MC Sampling

lons in a plasma can interact with each other and electrons to undergo competing reactions.

Ion transport occurs simultaneously with reactions, which can be sampled using MC methods

$$\frac{\mathrm{d}n_i}{\mathrm{d}t} = n_{i-1}n_e\gamma_{i-1,i} - n_in_e\gamma_{i,i+1} + n_{i+1}n_0E_{i+1,i} - n_in_0E_{i,i-1} - \frac{n_i}{\tau_i}$$

Electron impact ionization (EI) Ion impact charge exchange (CEX)

 $v_{ion} = n_e \sigma_{ion,i \to i+1} v_{e,rel}$

 $v_{CEX} = n_0 \sigma_{CEX, i \to i-1} v_{i, rel}$

$$\begin{split} \sigma_{ion,i\rightarrow i+1} &= \frac{10^{-17}}{I_i E_e} \bigg[\sum_{n=1}^6 A_n (1 - \frac{I_i}{E_e})^n + B \ln(\frac{E_e}{I_i}) \bigg] \\ & [\text{Lotz, W., Zeitschrift fur Physik 216, pp. 241–247,} \\ (1968). \\ \sigma_{CEX,i\rightarrow i-1} &= A i^{\alpha} (I_0)^{\beta} \end{split}$$

ECRIS	ω	Pinj	Gas	Р	r	L
A-LPC	12.84 GHz	30 W	Ar	10 ⁻⁶ mbar	29 mm	210 mm
A-HPC	14.25 GHz	200 W	Ar	10 ⁻⁶ mbar	29 mm	210 mm
LEGIS	14.428 GHz	100 W	0	5×10^{-5} mbar	25 mm	130 mm

The plots comparing volume-averaged (on n_e and E_e) frequencies of EI and CEX processes offer insight into the dynamics of atomic processes as a function of ionisation stage.

$$P_{tot}(T_{step}) = 1 - e^{-\nu_{tot}T_{step}} = \frac{\nu_{ion} + \nu_{CEX}}{\nu_{tot}} (1 - e^{-\nu_{tot}T_{step}})$$
$$= \frac{\nu_{ion}}{\nu_{tot}} (1 - e^{-\nu_{tot}T_{step}}) + \frac{\nu_{CEX}}{\nu_{tot}} (1 - e^{-\nu_{tot}T_{step}})$$
$$= P_{ion}(T_{step}) + P_{CEX}(T_{step})$$

- Ionisation if $0 \le r < P_{ion}$
- CEX if $P_{ion} \le r < (P_{ion} + P_{CEX})$
- Nothing if $(P_{ion} + P_{CEX}) \le r < 1$

CEX and EI depend on ECRIS tuning parameter: pressure, power, species, CSD

Modelling processes can help in experimentally finetuning the CSD

Comparison between averaged EI and CEX frequencies in ATOMKI ECRIS with argon (top) and LEGIS with oxygen (bottom)

Plasma Ion Simulations - Modules

Density Scaling and CSD

The results of ion transport + MC sampling are 3D accumulation maps which denote relative particle occupation in each simulation cell, and **transfer coefficient** which **weigh the accumulation maps** according to EI and CEX reactions.

The accumulation maps can be scaled by considering global charge neutrality with electrons

Plasma Electron Simulations – Exp. benchmark

Plasma diagnostic technique developed by INFN – LNS, Catania and ATOMKI, Debrecen to study properties of warm/hot electrons in ECR plasma using volumetric and space-resolved soft X-ray spectroscopy ($2 < E_{hv} < 30 \text{ keV}$)

Plasma Ion Simulations – Results and exp. benchmark

Plasmas for

Astrophysics Nuclear

Decay Observation and Radiation for Archaeometry

The main results of the PIC-MC simulations are 3D steady-state maps of ion density in for each ionisation stage and <Z>

Plasma Ion Simulations – Results and exp. benchmark

B. Mishra *et al*, Frontiers in Physics 10:932448 [**] S. Biri *et al*, Rev. Sci. Instrum. 83, 02A431 (2012)

APPLICATIONS & RESULTS

ECRIS 24 - angelo.pidatella@Ins.infn.it

E_v [keV]

202.88 & 306.78

795.86

Pidatella, A. et al., Plasma Phys. Control. Fusion 66 (3), 035016 (2024)

WHY?

 PANDORA focus: poisoning of γ-ray signal-to-background ratio at HpGe detection array from decaying ¹³⁴Cs neutrals deposited on chamber wall

- Injection via resistively heated ovens for Cs (~420 K) 1 ppm w.r.t. plasma ion density
 - Expected measurement time for ¹³⁴Cs: 12 h
 - Expected quantity used: 5.5E-10 mg of ¹³⁴Cs

Courtesy of F. Maimone and GSI colleagues

Study of metallic atoms diffusion, transport, and deposition in ECR plasma evidencing the plasma role on a space-dependent ionisation

- HOW?
- Monte Carlo particle mover: time-dependent thermal diffusion (atoms), reaction (ionised), transport of ions (q=1⁺), and deposition according to ECR plasma dynamics model
- Reaction maps: self-consistent Particle-In-Cell PANDORA plasma simulation (EM field coupled to particle motion in trap) providing 3D plasma electron/ion density and energy maps

t_{1/2} [yr]

3.78 · 10¹⁰

2.06

Isotope

¹⁷⁶Lu

¹³⁴Cs

RESULTS – Study of metal evaporation dynamics in ECRIS

Plasmas for Astrophysics Nuclear Decay Observation and Radiation for Archaeometry

Pidatella, A. et al., Plasma Phys. Control. Fusion 66 (3), 035016 (2024)

RESULTS – Study of metal evaporation dynamics in ECRIS

Pidatella, A. et al., Plasma Phys. Control. Fusion 66 (3), 035016 (2024)

¹³⁴Cs diffusion & transport- no hot screen

¹³⁴Cs – diffusion & transport with hot screen (870 K)

N° Ionisations 10² higher than no-liner

MAIN RESULT: γ signal arising from deposited short lived β -decaying Cs isotopes at the trap's wall is negligible along the detection sight-lines

APPLICABILITY and IMPACT

- Study for unconventional emitting surface of ovens: increasing exposure to the plasma
- Study for unconventional oven position: better coupled to the inner plasma region to improve efficiency
- Study evaporation strategies to reduce metal deposition or recycling of deposited: reduction of long-term instabilities
- Regions more exposed to metal fluxes for sensoring and online monitoring: QMC, OES, etc. – better assessment of sensor position

HOW?

Mishra, B, Pidatella, A. et al., arXiv:2407.01787, https://doi.org/10.48550/arXiv.2407.01787

PIC simulations of reacting ⁷Be ions in ECR plasma:

Description: Steady-state maps of plasma electrons and ions +Balance equation PIC-MC simulated 3D ⁷Be CSD ٠ (EI + CEX) + W.I.P. : atomic excitations (electron collisional (de)excitation)

Transport in EM fields under Lorentz force

Collisions by Fokker-Planck equation

Electron impact ionization (EI)

Scaling of ⁷Be ion density on

plasma buffer ion occupation

map

Ion impact charge exchange (CEX)

- Self-consistency: Electron/ion density and energy maps
- Scaling: Fraction of buffer ion density

lon

Transport

MC

Sampling

Density

Scaling

RESULT: How do ECR plasmas affect β-decay rates?

lasmas for

Astrophysics Nuclear

Decay Observation and Radiation for Archaeometry

Mishra, B, Pidatella, A. *et al.*, arXiv:2407.01787 , https://doi.org/10.48550/arXiv.2407.01787

Impact of different isotope injection ⁷Be– starting normal distribution ⁷Be– starting injection of beam conditions and atomic excitation Z[m]Y[m]0.02 0.02 0.04 0.08 0.02Z[m]0.030.12**OHF** 0.06 1. 0.09 0.12 This work $Y[m]_0$ -0.02 $\lambda^{*}(ij) \; [imes 10^{-7} \; s^{-1}] \; \stackrel{\odot}{\underset{i=0}{\overset{\circ}{:}}} \;$ -0.02 -0.02 X [m]-0.02 $\begin{bmatrix} \varpi \end{bmatrix}_0$ 0.02 - $\langle Z
angle_{^7Be}$ 5 2 0.5 04g02 04g03 li2s li3s he1s he2s he3s hy1 hy2 0.02^{-1} Level index 10 N Figure 5: ⁷Be configuration-dependent $\lambda^*(ij)$ calculated using our model and DHF [31, 41, 57]. ⁷Be- in-plasma half-life only GS ⁷Be- in-plasma half-life only GS (up 2⁺) ⁷Be- in-plasma half-life with 1st ES (up 2⁺) 0.08 0.120.02Z[m] = 0.030.02Z [m] 0.03 $t_{1/2}\left[\mathrm{d}\right]$ $t_{1/2}\left[\mathrm{d}\right]$ 0.06 0.06 0.09 0.09 -0.02 0.12 0.12 70 $Y[m]_0$ $\mathbf{Y}~[m]~\mathbf{0}$ -0.02 -0.02-0.02 65 X [m]53-0.02 -0.02 60 52[*m*] 0 [m]0 0.02 $t^*_{1/2}$ \varkappa 5585 80 75 22 65 60 55 0.02 0.02 20

What's next? – Outlook and perspectives

Salvia, C. *et al.,* Il Nuovo Cimento C **47** (271), (2024)

Plasmas for Astrophysics Nuclear

Decay Observation and Radiation for Archaeometry

- Wave propagation and interaction in the plasma chamber by modelling a hot EM tensor
- **1D semi-analytical model** studying EM propagation of fast wave X considering **ion cyclotron heating** in plasma
- Divertor Tokamak Test (DTT) plasma fusion scenario and profiles (electron/ion density, temperature, magnetic field)
- Linearised Vlasov Eqs. assuming plasma stationarity, homogeinity, no collisions, no strong EM perturbation solving for collisionless EM wave damping in plasma (e.g., Landau damping)

Summary and conclusions

- ECRIS useful for generating ion beams with tunable magnitude and charge states, but their internal plasma structure is complex
- Full-wave PIC codes which evolve density with EM field distribution can furnish space-resolved maps of electron density and energy
- The algorithm **could now be updated** to shift from **cold to hot electron tensor** description
- **PIC-MC codes**: ion balance equation self-consistently with electron charge distribution can furnish space-resolved maps of CSD and excitation levels
- Together these maps are powerful predictive tools to study numerous ECR plasma phenomena like X-ray emission, heavy element opacity, neutral particle dynamics and in-plasma nuclear reactions
- These simulations can **improve fundamental understanding of the operation of ECR ion sources** (instabilities, current generation) as well as for applications involving them (PANDORA facility)

Thanks for your attention!!

