

High performance highly-charged ECR ion sources and

matching with high-intensity heavy ion accelerator facilities

Hongwei Zhao, Liangting Sun, Yao Yang, Wang Lu and IMP ECRIS team

Institute of Modern Physics (IMP), Chinese Academy of Sciences Lanzhou, China

- What type of ECRIS would be built for a heavy ion accelerator in terms of beam intensity, energy and performance-cost-efficiency?
- Beam quality from ECRIS and efficient acceleration of high intensity heavy ion beams.

What type of ECRIS should be built for a heavy ion accelerator

- A few tens of ECRISs have been in operation at the cyclotrons and linacs over the world.
- Three types of ECRISs in terms of RF frequency

RT LECR5 14-18 **GHz**

SC FECR 45-60 GHz

What type of ECRIS should be built to improve performance of a heavy ion accelerator (cyclotron or linac) in terms of beam intensity, energy and cost ?

18 GHz RT ECRIS can meet requirements of typical cyclotron and linac

LECR5 **18 GHz**

- 50-150 eµA is an appropriate beam intensity for a cyclotron and RT linac.
- Cyclotron beam intensity limit comes from the axial injection system and space charge effect
- Higher beam intensity is quite difficult for a CW RT linac due to thermal loss at high RF power.

		LECR5 [eµA]	
Ion species	Charge state	18+ 18 GHz	
		2-3 kW	
⁴⁰ Ar	12+	415	
	14+	170	
	16+	62	
⁷⁸ Kr	18+	220	
	23+	73	
	26+	32	
¹²⁹ Xe	26+	200	
	28+	100	
	30+	28	
⁴⁰ Ca	11+	230	
	14+	115	
	16+	65	
⁵⁰ Ti	11+	50-100*	
	16+	30-60*	
²³⁸ U	20+	100*	
	33+	50	

Maximum beam intensities produced by LECR5 at 18 GHz

estimated

SECRAL-II, 24-28GHZ

Higher charge state beams by 28 GHz ECRIS may upgrade accelerator to higher energy, particularly for existing operational cyclotron.

		SECRAL&
Ion species	Charge state	24~28 +18 GHz
ł	8	6-10 kW
		[eµA]
⁴⁰ Ar	12+	1420
	16+	620
	18+	15
⁷⁸ Kr	18+	1030
	28+	145
¹²⁹ Xe	26+	1100
	30+	365
	42+	16
²⁰⁹ Bi	31+	680
	41+	100
²³⁸ U	34+	620
	35+	545
	46 +	61
	55+	13

24-28 GHz SC-ECRISs at HIRFL

SECRAL&II operation improved energy of HIRFL-SFC cyclotron

HIRFL-SFC cyclotron (k=69) used as an injector to SSC or CSR

SECRAL operation 2007-2018; SECRAL-II operation 2018-present

SECRAL&II operation improved intensity of HIRFL-SFC cyclotron

TINTE

Beam operation intensities from SFC Cyclotron

Build a new superconducting heavy ion cyclotron, 15 MeV/A Uranium beam. What ECRIS would be built?

lon beam	Beam current (eµA)	ECRIS RF (GHz)	Cyclotron RF (MHz)	Extraction Radius R (m)	Cyclotron Magnet R (m)	Magnet cost roughly (M\$)	E (MeV/A)
238U46+	50-70	28	11.5, h=4,6	1.3	3.6	5.0 *	15
²³⁸ U ²⁰⁺	50-70	18	11.5, h=4,6	3.0	6.5	14*	15

* Cost for manpower not included.

- The cyclotron with 28 GHz ECRIS delivering ²³⁸U⁴⁶⁺ more compact and performance-cost efficient.
- Only cost difference of the cyclotron superconducting magnet would be 9.0 M\$, enough for two 28 GHz ECRIS.

Build a new heavy ion RT linac, 15 Me/A Uranium beam. What ECRIS would be built?

lon beam	Beam current (eμA)	ECRIS RF (GHz)	Linac length roughly (m)	Linac cost roughly (M\$)	E (MeV/A)
238U46+	50-70	28	50	65 *	15
²³⁸ U ²⁰⁺	50-70	18	105	100 *	15
			* Cost f	for mannowor	not included

- The RT linac with 28 GHz ECRIS delivering ²³⁸U⁴⁶⁺ more compact and performance-cost efficient.
- The cost difference of the RT linac would be 35 M\$, enough for eight 28 GHz ECRISs.

Build a new heavy ion cyclotron or SC linac dedicated to SHE, 5-8 Me/A for medium-mass ion beam. What ECRIS would be built?

lon beam	ECRIS RF (GHz)	Typical Beam current (pμA)	Beam current (pμA)	Material consumption (mg)
⁴⁸ Ca ¹⁵⁻¹⁶⁺ , ⁵⁰ Ti ¹⁶⁻¹⁷⁺ ⁵⁴ Cr ¹⁶⁻¹⁷⁺	28	>15	10	<1.0
⁴⁸ Ca ⁹⁻¹⁰⁺ , ⁵⁰ Ti ¹⁰⁻¹¹⁺ ⁵⁴ Cr ¹¹⁻¹²⁺	18	2-10	10	>1.5

28 GHz ECRIS can not only increase beam intensity, but also can reduce material consumption with higher charge state.

<u>China Accelerator Facility for Superheavy Elements (CAFE2)</u>

Operated beam intensities of LECR5 ion source and CAFE2

Ion species	Method	LECR5	CAFE2	CAFE2	Time on	Consumption
		Intensity	Energy	Target	target	Rate
		[eµA]	(MeV)	[pµA]	[Hrs]	[mg/h]
⁴⁰ Ca ¹³⁺	⁴⁰ CaO+Al	30-40	216-228	1.5-2.5	1500	0.86
⁵⁵ Mn ¹⁷⁺	⁵⁵ Mn	30-40	238-270	1.3-2.0	504	1.4
⁵⁴ Cr ¹⁷⁺	⁵⁴ Cr	20-30	217-290	1.0-1.5	1183	0.35
⁴⁸ Ca ¹⁴⁺	⁴⁸ CaO+Al	10-20	220-240	0.6-1.2	~600	0.50
⁴⁰ Ar ¹²⁺	⁴⁰ Ar	210	224	11-14	~10	~

- CAFE2 was operated with 11-14 pµA ⁴⁰Ar¹²⁺ beam for 10 hours (11 pµA for 9 hrs s and 14pµA for 1 hrs) to validate the high intensity operation and test the target.
- More confident to operate high intensity beam with SECRAL-III
- When SECRAL-III is put into operation, the beam intensities would be increased by a factor 3-5

How to improve performance-cost efficiently for a new HI accelerator (4)

Build a new heavy ion CW superconducting linac, 150 Me/A Uranium beam. What ECRIS would be built?

(1). 28 GHz ECRIS, stripper low efficiency and lifetime problem

Estimated beam intensities by 45-60 GHz SC ECRIS

		SC ECRIS
Ion choose	Chargo stata	45-60 GHz
ion species	Charge state	10-15 kW
		[eµA]
⁴⁰ Ar	16+	~1000
	18+	~100
¹²⁹ Xe	30+	~1000
	42+	~100
²⁰⁹ Bi	35+	~1000
	55+	~100
238U	35+	~1000
	55+	~100

"False" 45 GHz FECR

- What type of ECRIS would be built for a heavy ion accelerator in terms of beam intensity, energy and performance-cost-efficiency?
- Beam quality from ECRIS and efficient acceleration of high intensity heavy ion beams.

HIAF upgrading plan: iLinac beam enegy 150 MeV/A

<u>H</u>igh **<u>I</u>ntensity heavy-ion <u>A</u>ccelerator <u>F</u>acility (<u>HIAF**</u>)

Acceleration of high intensity heavy ion beams: LEAF

High-intensity beams produced by ECRIS and accelerated by LEAF-RFQ

-60 -50 -4

- Current from ECR~200 eµA by SECRAL-I
- $\varepsilon_x = 0.16 \pi$ mm mrad, $\varepsilon_y = 0.18 \pi$ mm mrad
- RFQ transmission efficiency >95%
- RFQ acceleration efficiency >83%
- Accelerated current~160 eµA
- Current from ECR~1200 eµA by SECRAL-I
- $\epsilon_x = 0.34 \pi \text{ mm mrad}, \epsilon_y = 0.39 \pi \text{ mm mrad}$
- RFQ transmission efficiency ~72%
- RFQ acceleration efficiency ~63%
- Accelerated current~730 eμA

To improve the RFQ's transmission efficiency ~ higher than 90%
Nearly half of the current is removed by the LEBT collimator
Finally, accelerated current~410 eµA

High-intensity beams produced by ECRIS and accelerated by LEAF-RFQ

- Low-current cases: ECR beam currents ≤ 200 eµA
- Emittances typically below 0.2 π mm mrad
- RFQ transmission > 95%

- Current from ECR~1500 eµA by FECR
- $\varepsilon_x = 0.34 \pi$ mm mrad & $\varepsilon_y = 0.3 \pi$ mm mrad
- RFQ input~1242 eµA
- RFQ transmission efficiency ~88%

• RFQ acceleration efficiency ~83%

Accelerated current~1036 eµA

1 emA ¹⁶O⁶⁺ CW beam acceleration by LEAF-RFQ

FECR: 1.6 emA O⁶⁺

CW beam acceleration of 1.0 emA ¹⁶O⁶⁺

High-intensity beams produced by ECRIS and accelerated by LEAF-RFQ

209**Ri**35+

- $\varepsilon_{x}=0.16 \pi$ mm mrad
- $\varepsilon_y = 0.24 \pi \text{ mm mrad}$

- RFQ input~ 300 eµA
- RFQ transmission efficiency ~95%
- RFQ acceleration efficiency ~80%
- Accelerated current~240 eµA

24

MP

- Slide from my talk at ICIS2013.
- Beam intensities have been improved a lot in the past 10 years.
- But beam quality from ECRIS at high intensity has not been improved as expected and demanded.

H.W.Zhao, ICIS2013, Japan, Sept.8-13, 2013

Challenging to produce and accelerate high-intensity HI beams

Production of 545 eµA ²³⁸U³⁵⁺ by SECRAL-II

- Beam distribution in phase space and emittance are not so good.
- Beam emittance at high current ε_{nrms} < 0.1 mmm mrad for high efficiency acceleration

Higher charge state and lower intensity may achieve lower emittance

With 25 eµA ²³⁸U⁴⁶⁺ beam intensity and low emittance, SSC-linac RFQ achieved 94% acceleration efficiency and 95% transmission efficiency.

But we need higher charge state, higher beam intensity and lower emittance

- High performance ECRIS at 28-60 GHz not only increases beam intensity, charge state and energy, but also makes accelerator performance-cost more efficient.
- The biggest challenge for mA CW heavy ion beam acceleration by RFQ and SC linac is beam quality from ECRIS.

Acknowledgement

Thanks for your attention !

The authors appreciated very much for the calculations and estimations done by the IMP colleagues Bing Wang, Xuejun Yin, Yue Tao, Qinggao Yao.