

## **Recent achievements in the production of** metallic ion beams with the CAPRICE **ECRIS** at GSI

**Aleksandr Andreev** 

GSI Helmholtzzentrum für Schwerionenforschung GmbH

Aleksandr Andreev



- Introduction to CAPRICE ECRIS at GSI
- Metal Ion Beam Production at GSI
- Diagnostic Devices
- Results: Chromium & Manganese Beam Tests



### **GSI** accelerator facility





## **CAPRICE ECRIS** @ HLI

#### **CAPRICE ECRIS**



#### **CAPRICE ECRIS** main parameters

| Hexapole field          | 1,2 T                  |
|-------------------------|------------------------|
| Solenoid field          | 0,81,5 T               |
| µW-power                | 800 W (CW mode)        |
| µW-frequency            | 14.5 (12,416) GHz      |
| Extraction Voltage [kV] | ≤ 22                   |
| Ion Species             | Gas + Solid state (Me) |
| Mode                    | CW or Pulsed           |





### **CAPRICE ECRIS** @ HLI



# Evaporation technique for metal ion beam production @ HLI



#### Standard Temperature Oven (STO)





#### Layout

- Resistively heated by current running around the heater body, central current entry
- Aperture ring or crucible
- Water cooled support tube
- Tungsten mesh shielding to prevent parasitic heating (Tungsten, type 100 holes/inch, 25.4 µm wire, 81% transparency)

#### **Operating parameters**

- Power: 2-120W
- Temperature: 400 -1550°C
- Consumption: 0,2 5 mg/h
- Lifetimes days:  ${}^{48}Ca \le 30$ ,  ${}^{64}Ni \le 6$

# Evaporation technique for metal ion beam production @ HLI



#### **Microwave shielding**





#### Layout

- Resistively heated by current running around the heater body, central current entry
- Aperture ring or crucible
- Water cooled support tube
- Tungsten mesh shielding to prevent parasitic heating (Tungsten, type 100 holes/inch, 25.4 µm wire, 81% transparency)

#### **Operating parameters**

- Power: 2-120W
- Temperature: 400 -1550°C
- Consumption: 0,2 5 mg/h
- Lifetimes days:  ${}^{48}Ca \le 30$ ,  ${}^{64}Ni \le 6$



## **Oven preparation stand @ HLI**

#### **Purpose:**

- Essential tool for conditioning ovens before beam operation
- Minimizes downtime during operation
- Improves beam stability and reproducibility

#### **Key features:**

- Controlled environment for oven outgassing and material preheating (e.g. Ni)
- Simultaneous oven insertion with 6 airlocks (previously 4)
- Water cooling system for ovens and the stand
- **Online monitoring** (planned: 2-3 cameras) for material conditioning
- Residual gas analyzer (planned) for better analysis and process control





### **Optical diagnostic devices @ HLI**

**CAPRICE ECRIS** 



A CCD camera looks through the straight beam line and the extraction aperture into the plasma chamber.

Optical spectroscopy as a diagnostic tool for metal ion beam production with an ECRIS

F.Maimone, J.Mäder, R.Lang, P.T.Patchakui, K.Tinschert R.Hollinger, Rev. Sci. Instrum. 90, 123108, 2019



**Optical Beam Splitter and Glass Fiber** 

..to the Optical Emission Spectrometer





### **Optical diagnostic devices @ HLI**



## Example: OES diagnostic during first <sup>48</sup>Ca<sup>10+</sup> beam run in 2022





GSI Helmholtzzentrum für Schwerionenforschung GmbH



## <sup>54</sup>Cr<sup>10+</sup> engineering run results

#### Short-term tests at the test bench (6-8 hours):

- Set target **50 µA** <sup>54</sup>**Cr**<sup>10+</sup> for beam intensity, stability, and oven lifetime
- Material consumption w.o. recycling: 8 mg/h Engineering run (3 days):
- Target intensity reached on Day 1
- Discharges began on Day 2, increasing in frequency over time, affecting beam stability
- Discharges impacted beam stability, target ٠ intensity could not be maintained





GSI Helmholtzzentrum für Schwerionenforschung GmbH



## <sup>54</sup>Cr<sup>10+</sup> engineering run results

#### Short-term tests at the test bench (6-8 hours):

- Set target 50 µA <sup>54</sup>Cr<sup>10+</sup> for beam intensity, stability, and oven lifetime
- Material consumption w.o. recycling: 8 mg/h Engineering run (3 days):
- Target intensity reached on Day 1
- Discharges began on Day 2, increasing in frequency over time, affecting beam stability
- Discharges impacted beam stability, target intensity could not be maintained



#### Current at the screening electrode





## <sup>54</sup>Cr<sup>10+</sup> engineering run results

#### Short-term tests at the test bench (6-8 hours):

- Set target 50 µA <sup>54</sup>Cr<sup>10+</sup> for beam intensity, stability, and oven lifetime
- Material consumption w.o. recycling: 8 mg/h Engineering run (3 days):
- Target intensity reached on Day 1
- Discharges began on Day 2, increasing in frequency over time, affecting beam stability
- Discharges impacted beam stability, target intensity could not be maintained





#### Current at the screening electrode

## Discharges during <sup>54</sup>Cr beam operation



- After disassembling the ECRIS, metallic traces were found on ceramic insulators in the extraction column
- SEM EDX investigation could not determine the traces material
- Possible explanation: discharges between the screening electrode and high-voltage section (17 kV) due to metal buildup on the ceramic









\*Courtesy of GSI Materials Research Department

## Discharges during <sup>54</sup>Cr beam operation



- After disassembling the ECRIS, metallic traces were found on ceramic insulators in the extraction column
- SEM EDX investigation could not determine the traces material
- Possible explanation: discharges between the screening electrode and high-voltage section (17 kV) due to metal buildup on the ceramic
- Planned tests with a hot screen (similar to Mn) to mitigate metal buildup





\*Courtesy of GSI Materials Research Department



## <sup>54</sup>Cr beam operation with mesh and CCD oven images



- Tungsten mesh installed to prevent parasitic microwave heating
- Condensed Cr material started accumulating on the mesh after a few hours
- Beam operation was stable, but the mesh clogged, reducing beam intensity
- **Oven images** show material gradually decreases inside the oven over 5 days
- Material also condenses around the colder oven orifice; could affect stable beam production
- Real-time monitoring with CCD camera provides feedback on evaporation efficiency and material behavior









### <sup>54</sup>Cr beam operation with mesh and CCD oven images

- Tungsten mesh installed to prevent parasitic microwave heating
- Condensed Cr material started accumulating on the mesh after a few hours
- Beam operation was stable, but the mesh clogged, reducing beam intensity
- **Oven images** show material gradually decreases inside the oven over 5 days
- Material also condenses around the colder oven orifice; could affect stable beam production
- Real-time monitoring with CCD camera provides feedback on evaporation efficiency and material behavior

#### Mesh clogged after <sup>54</sup>Cr operation





# <sup>55</sup>Mn<sup>9+</sup> beam establishment test results





GSI Helmholtzzentrum für Schwerionenforschung GmbH

## <sup>55</sup>Mn beam operation with mesh and CCD oven images

- **RIS** G S I
- Test run using **Tungsten mesh**, as with the Cr beam
- The mesh clogged heavily with condensed <sup>55</sup>Mn after one day of operation
- By the end of the test a stable beam could no longer be produced
- Oven images show material reduction inside the oven over 2 days
- Material also condenses around the colder oven orifice
- Condensed <sup>55</sup>Mn (1.1 g) was recovered, reinserted, and reused in subsequent operations, improving material consumption efficiency







## <sup>55</sup>Mn beam operation with mesh and CCD oven images

- **RIS G S I**
- Test run using **Tungsten mesh**, as with the Cr beam
- The mesh clogged heavily with condensed <sup>55</sup>Mn after one day of operation
- By the end of the test a stable beam could no longer be produced
- Oven images show material reduction inside the oven over 2 days
- Material also condenses around the colder oven orifice
- Condensed <sup>55</sup>Mn (1.1 g) was recovered, reinserted, and reused in subsequent operations, improving material consumption efficiency

#### Condensed <sup>55</sup>Mn (1.1g) from the oven after operation





## Oven parasitic microwave heating during <sup>55</sup>Mn beam operation





## Plasma condition monitoring with OES during <sup>55</sup>Mn beam operation







### Summary

- The resistive heated oven is an established technique for metallic element evaporation with the CAPRICE ECRIS at GSI. The CAPRICE ECRIS successfully produces beams of <sup>54</sup>Cr<sup>10+</sup> and <sup>55</sup>Mn<sup>9+</sup> at high intensities, with good control over the ECRIS parameters.
- Long term operation for <sup>54</sup>Cr is limited by the material deposition on the ceramic isolators in the extraction column.
- The use of a **Ta liner** extends the operational time for <sup>55</sup>Mn, and tests for <sup>54</sup>Cr are planned.
- Microwave shielding can prevent parasitic heating of the oven for elements with low sublimation temperature. However, this approach was ineffective for both <sup>54</sup>Cr and <sup>55</sup>Mn, which became clogged after just a few hours to one day of operation due to material condenstation.
- Optical emission spectroscopy and plasma/oven imaging are powerful diagnostic tools for metal ion beam production with ECRIS. These tools allow us to detect instabilities, observe changes in plasma conditions and identify parasitic microwave heating of the oven, as well as to monitor material consumption and condensation in real time.



### Thank you for your attention!



#### THE ECRIS TEAM

Ralph Hollinger (dpt. Leader) Fabio Maimone Michael Galonska Ralf Lang Jan Mäder Michael Händler Me