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Outline

Introduction: High intensity HCI beam needs at IMP

High intensity HCI solutions

◆Operation status

◆New technical approaches

◆FECR ion source development

Summary
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Introduction：HIRFL and physics request high intensity HCI

CSRm

CSReSSC SFC

Physics
Needed Ion Beam 

Energy
(MeV/u)

Equation of state of nuclear matter at 
low temperature and high density

Quarkonium
symmetry energy

Xe: 105pps 
E = 400 - 600

C: 105pps 
E = 400 - 600 

Baryon number fluctuations
QCD critical point

238U7x+: 104 pps
E = 500－700

C: 105 pps
E = 500

CEE

ECR (50~100 eμA U46+)→SSC-

Linac→SSC→Striper→U74+
→CSRm→≥500 MeV/u U74+

CSR External target 
Experiment

CEE

U46+

U74+

SECRAL-I: U46+

High Intensity
238U46+ beam

HIRFL 
facility layout
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Introduction：SHE Facility-CAFe 2

LEBT RFQ MEBT SRF-Linac

SHANS-2

HEBT
LECR5 Layout of CAFE-2

Heavy ion Linac

Experimental 
Area

Ca13+ >40 eμA
by LECR5

Ca13+

~28 eμA

Parameters Design Unit

Particles Ca～Zn -

M/Q ~1/3 -

Energy ~6 MeV/u

Intensity 3-5/10~20 pμA

Operation Mode CW -

◼ High Intensity SC HC HI linac for 
Medium Mass Metallic Ion Beams 
dedicated to SHE (119&120)

◼ Upgraded the ADS SC proton linac
Demo-machine 

New source: SECRAL-III, 28GHz See Lu’s talk MOC3 this afternoon
& Nuclear Inst. and Methods in Physics Research, A 1062 (2024) 169207
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Introduction: HIAF

T1

iLinac
SECR 

HFRS 
SRing

T2 T3
T4

T5

T6

BRing: Booster Ring
C: 569 m
Bρ: 34 Tm

SRing: Spectrometer ring
C: 278m
Bρ: 15Tm

iLinac-2 (reserved)
E: 150 MeV/u U46+ 

 CW: >10 pμA U46+

 ~50 pμA U35+/ ≤3 Hz@0.5~2 ms

High Intensity CW/Pulsed Ion Beams

High Intensity heavy-ion Accelerator Facility (HIAF)
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Solutions : HIRFL Uranium Beam Operation

238U37+—10.67MeV/u

4.6 eμA 10.67 MeV/ u U37+ extracted from SSC, 
but not sufficient for 500 MeV/u with CSRm

LECR4: 18 GHz ECR ion source with 
evaporative cooling of the axial coils.
Used to be delivering U37+ beam for SSC-linac.

W. Lu, WEOMMH02@ECRIS’14

CW operation

AG operation
50~70 eμA U37+
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Solutions : HIRFL Uranium Beam Operation

SECRAL-I: 28 GHz ECR ion source
◆ Upgraded from 24 GHz SECRAL

◆ Ø  120 mm ID plasma chamber

◆ 10 kW max. μW power

◆ Al plasma chamber with micro-channel cooling Lower emittance for higher charge state
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Solutions : HIRFL Uranium Beam Operation
238U46+—1.48MeV/u238U46+—15.53MeV/u

238U74+—500MeV/u

CEE

AMS

Stripper： 46+ →74+

25~30 eμA 238U46+ 500MeV/u 238U74+ 

@1×108 ppp
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Solutions : Intense ion beam needs for HIAF

2nd G ECRIS

3rd G ECRIS

4th G ECRIS
23

8 U
HIAF-CW

HIAF-pulsed

How to meet the needs?
 New techniques for CW and pulsed beam
 Next generation ECRIS

HIAF needs both intense CW and 
pulsed HCI  beams
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Solutions 1 : New Techniques— Microwave Heating

◆ Vlasov launcher vs. oversized WG:
more efficient in plasma heating

◆ μW power distribution might be a key to 
efficient HCI production

◆ Recorded beam intensities production：

18 eμA Xe42+、56 eμA Xe38+、

146 eμA Xe34+、374 eμA Xe30+

X. Wang, PHYS. REV. ACCEL. BEAMS 27, 083401 (2024)

Efficient microwave launching:Vlasov Launcher 

Movable

Beam intensity Iq response to 
Vlasov launcher position

Xe30+

Iq and Bremsstrahlung counts 
responses to Vlasov launcher position

Xe30+

Xe27+

U35+
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Solutions 2:  New Techniques— Optimizing Afterglow 

ion/current
(eμA）

SECRAL-II 
28+18 GHz

（CW~10 kW）

SECRAL-II 
24+18 GHz

（AG 8-9 kW）

AG peak 
incease factor

Xe30+ 365 503 1.37

Xe34+ 135 266 1.97

Xe38+ 56 169 3.02

Xe42+ 16 50 3.12

2 ms

8~10ms

L. X. Li, PHYS. REV. ACCEL. BEAMS 25, 063402 (2022)

Double frequency heating:

◆Higher AG peak beam intensities

◆Manipulate AG beam pulse length

Longer AG pulses with 3rd generation ECRIS :

◆Higher B field

◆Bigger plasma volume 

Optimize AG to get the peaks with higher intensity 
and longer pulses.  24-28 GHz SC ECRIS?
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Solutions 3: New Techniques— New pulsed biased-disk 

μW on

BD on with V=V0+V1

BD= 0

BD on with V0

μW off

⚫ Previous or traditional work: only V pulsed
⚫ This work: V0+ V1, V0 DC voltage, V1 pulsed

23 25 26 27 28 29 30 31 33 34 35
0

50

100

150

200

Be
am

 c
ur

re
nt

 (e
m

A)

Xe charge state

 CW
 Traditional AG
 AG with pulsed BD

New pulsed BD scheme contributes evenly to all 
charge states and increases AG peak intensity 
significantly

Xe beams
(optimized for Xe30+)

U beams
(optimized for U46+)

Traditional AG
AG with pulsed BD@18 GHz，

SECRAL-II 
@18 GHz, 
SECRAL-II

See L. X. Li @MOP02 for more details

How to explain?
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Solutions 4: High Intensity Uranium Beam Production

14.5 + 10 GHz AECR-U
(oven + URe2 alloy)

28 GHz VENUS 
(oven + URe2 alloy)

28 GHz VENUS 
(HTO + UO2)

28 GHz SECRAL-II 
(IHO + UO2)

18 GHz SuSI
(Sputtering)

24 GHz SECRAL
(Sputtering)

28 GHz SCECRIS/RIKEN
(Sputtering)

28 GHz SCECRIS/RIKEN
(HTO + UO2)

High Intensity U35+

◆ High performance ECRIS
◆ Reliable high-T oven >2000℃

HTO: High temperature resistor heating oven, IHO: Inductive heating oven

U35+ 545 eμA
24 GHz SECRAL-II

(IHO + UO2)
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Solutions 4: Record Intensities of Uranium Beams

18 GHz

24 GHz

Oven
Power Supply

Features:
◆ High performance SECRAL-II ion source

◆ High power: 7 kW@24 GHz + 2 kW@18 GHz

◆ Reliable IHO oven: >2000℃

U 
Charge State

SECRAL-2023
(eμA)

Records as of 
2022 (eμA)

Contributors 
as of 2022

33 640 450 SECRAL-II/IMP1

34 620 400 VENUS/LBNL2

35 545 310
VENUS/LBNL，
SECRAL-II/IMP

42 100 62.6 SCECRIS/RIKEN3

46 61 36.2 SCECRIS/RIKEN

50 38 20.1 SCECRIS/RIKEN

54 19 10.4 SCECRIS/RIKEN

56 9.5 0.9 SECRAL-II/IMP

58 2.7 0.7 SECRAL-II/IMP
1. W. Lu et al., Rev. Sci. Instrum. 90, 113318 (2019)
2. J. Benitez, et al., ECRIS2012, THXO02-talk
3. T. Nakagawa, Cyclotron’22, invited talk

See Lu’s talk MOC3 this afternoon

SECRAL-II
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Solutions 4: High Intensity Uranium Beams

Production of 545 eμA 238U35+ by SECRAL II
◼ Material: UO2+O2,IHO
◼ Frequency: 24+18 GHz
◼ μW power: ~7.9 kW
◼ Total drain: ~13.2 emA
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Specs. Unit Value

Frequency GHz 45

RF Power kW 20

Chamber ID mm ≥Ø140

Mirror Fields T ≥6.4/3.2

Brad T ≥3.2

Mirror Length mm ~500

Bmax in conductor T ~11.8

Magnet coils / Nb3Sn

Nb3Sn Jc>1500 A/mm2@12T

Cooling

Capacity@4.2 K
W >10.0

Specs. of FECR
FECR (First 4th generation ECR ion source)

H. W. Zhao et al., Review of Scientific Instruments 89, 052301 (2018)

Solutions 5: Next Generation ECRIS
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Liangting Sun, ICFA-Newsletter 73, p34.

FECR : Technical Challenges

Specs. Unit FECR Challenges

frequency GHz 45 ◆ High frequency high power 
microwave coupling

◆ High power chamber coolingOperational RF Power kW 20

BECR T 1.6

◆ Reliable high field Nb3Sn magnet 
with min-B Field Configuration

Brad T ≥3.2

Binj T ≥6.4

Bmin T 0.5~1.1

Bext T ≥3.4

Plasma Chamber ID mm ≥140

Mirror Length mm 500

Cooling Capacity@4.2 K W ≥10.0 ◆ Radiation degradation and dynamic 
heat load            

U35+ mA >1.0 ◆ Intense solid material beam production
Pulsed Beam  Frequency Hz 0.5~3

◆ High afterglow yield and pulse duration
Afterglow pulse width ms >2.0
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FECR : The biggest Technical Challenge

⚫ Bmax in sextupole coils 11.3 T (ID Ø200 mm); HL-LHC Quad: 12 T, ID Ø150 mm.

⚫ Bmax in solenoids 11.8 T（ID Ø336 mm).

⚫ Stored energy 1.6 MJ (Ø160 mm), Stored energy density：1.9 MJ/m, 60 MJ/m3

⚫ HL-LHC MQFXA(1.9 k, 12 T, Ø150 mm) Stored energy density：1.2 MJ/m,

⚫ FCC  Dipole(4.2 k, 16 T, Ø50 mm) Stored energy density：2.5 MJ/m, 180MJ/m3. 

Typical Features of FECR Nb3Sn magnet coldmass
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COIL-PACK
SUBASSEMBLY

COLLARS
SEXTUPOLE

COILS

AXIAL-LOAD
END PLATE

SUBASSEMBLYS

SOLENOID
STRUCTUR

E
SUBASSEM

BLY

SHELL-YOKE
SUBASSEMBLY

(Shell is strain gauged)

MASTER-KEY 
PLATES

BLADDER
SUBASSEMBLY

LOAD-KEYS

YOKES

YOKE-SHELL
ALIGNMENT PINS

AXIAL RODS
(Strain Gauged)

COIL END
BLOCKS

In collaboration with ATAP/LBNL（2016~2017）

Key technologies and tests completed in close collaboration with XSMT in China (since 2016)

Bladder & Keys assembly

M. Juchno, et al., IEEE Trans. Appl. 

Supercond., 28(4), 2018, Art. 4005506

FECR : Nb3Sn Magnet Cold-Mass Structure
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FECR: 4-Step Strategy of the Magnet Coldmass Development

2.Key components and tech.

3. ½-length prototype
（2017.11-2021.12）

4. FECR coldmass full assembly
（2021.10-2022.05）

1.Prototyping single coils

2015.07~2022.12
From prototyping to operational magnet

8 years R&D, 
not yet completed
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Sextupole pre-assembly Sextupole in collars Sextupole & solenoids Load pad and wiring

Radial preload with bladder & keysAxial preload with pistonsInstrumentation in Pizzabox

FECR : ½-length Nb3Sn magnet Cold-Mass Assembly

Successful ½ -length 
prototype



◼ The sextupole quenched at 70%-90%, sextupole+one solenoid reached 77% design current
◼ 2 of the 6 sextupole coils turned out to have performance degradation or minor damage
◼ Validated and verified the magnet structure and the key technologies
◼ Learned a lot of lessons and experiences, manufacturing, assembling, quench protection, flux jump, ….

FECR: Cryogenic test of 1/2-length Nb3Sn magnet cold-mass
◼ Sextupole was energized only

◼ Sextupole and one solenoid were energized 

90% designed current

77% designed current



L. Sun, ECRIS2024, Darmstadt, 23/40

FECR : Full Length Nb3Sn Sextupole Coil Test

Po
le

 F
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 (T

)

C
ur

re
nt

 (A
)

Test of full-sized sext. coil

85% of operation current

Tested full-sized 
mirror structure

◼ Full-sized sextupole coil energized to 
85% design current with no quench

◼ Single coil performance demonstrated

L. Zhu, et al., IEEE Transactions on Applied
Superconductivity, Art no. 4006905 (2022).

Full length Nb3Sn sextupole coils manufacturing and tests
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FECR : Full Length Nb3Sn Sextupole Cold-mass Assembly

8 sextupole coils for full assembly With Quantum Max FaroArm
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FECR : Completed Nb3Sn magnet Coldmass

Completed FECR Nb3Sn magnet coldmass
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FECR : Problems and Risks in Full-length Magnet Assembly

Full-sized coldmass:

◆Over-stressed during pre-loading (assembly)

◆Sextupole coil leads broken

◆And resultant insulation risk
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FECR : Nb3Sn magnet Coldmass to Hybrid 

NbTi Sextupole 
Coils

Nb3Sn Solenoid 
Coils

NbTi Sextupole Coils

Nb3Sn→NbTi sextupole coils, Structure unchanged

80% B field of the
Nb3Sn magnet 
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FECR : Completed the Hybrid Magnet and Cryogenic Test

FECR Coldmass

FECR with Nb3Sn+NbTi coils：

◆ High precision fabrication

◆ High precision assembly

◆ Successful operation against Flux Jumps

◆ ECRIS magnet with highest magnetic fields 

In Cryostat

In Test Dewar

FECR Magnet

No quench

Reached design goal after several quenches



L. Sun, ECRIS2024, Darmstadt, 29/40

FECR : Hybrid-magnet Field Mapping

Robust structure
◆ Decision going to hybrid → successful coldmass = 9 months
◆ Magnetic fields precision well controlled
◆ Sextupole Bmax reaches the 93% loading factor of NbTi conductor
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FECR : First Beam Commissioning Results
Parameters Value

Microwave 45 GHz + 28 GHz

45 GHz Power 5-8 kW

28 GHz Power 5-6 kW

Typical operation fields Mirror peaks: 3.9 T/2.1 T
Br= 2.3 T

Commissioned ions O, Xe, Bi

Operation voltage 25 kV

FECR

45 GHz
Quasi-optical

28 GHz
Oversized WG

Micro-channel 
plasma chamber

Conventional 
Injection setup

Movable Extraction 
electrodes
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FECR: Joint Test at LEAF

FECR

0.5 MeV/A
RFQ

FC5

Layout of LEAF Platform

FC1

LEAF: Low Energy high intensity highly-charged heavy ion Accelerator Facility 
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FECR: Joint Test at LEAF and the First Results

FECR: 1.6 emA O6+

1.016 emA O6+@60 mins

1 hour stability demonstration of CW 1.0 emA O6+ beam 
accelerated by the LEAF-RFQ. Record intensity for HI RFQ
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FECR: Joint Test at LEAF and the First Results

FECR: 350 eμA 209Bi35+

B
ea

m
 In

te
ns

ity
 (e

μA
)

DM1 Current (A)

0.23 emA Bi35+@60 mins

Surprising and not understandable results: The magnetic field Bz peak 3.9 T,
Br at the wall 2.3 T,  28 GHz B field. But 45 GHz power played an significant
role for rasing the beam intensity? 45 GHz power was higher than 28 GHz power

6.5 kW 45GHz+5.5 kW 28GHz 1 hour stability demonstration of CW 230 eμA Bi35+ beam 
accelerated by the LEAF-RFQ. Record Bi intensity for HI RFQ
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Summary

◆New techniques are the engines to extract more intense HCI beams with ECRISs

◆Still need fundamental study and understanding towards the behavior of the 
magnetic field confined ECR plasma, especially for high field, high rf frequency   

◆The first version of FECR completed and produced beams

➢ High power 45 GHz + 28 GHz ECR plasma at lower B field reliable, the first results. 

➢ FECR produced 350 eμA Bi35+ with hybrid magnet and 45+28 GHz

➢ Two month beam commissioning results and phenomena interesting and need to be 
studied in detail. 

➢ LEAF with FECR delivered 2 weeks Xe and O beams for users demonstrating nice reliability

➢ Full Nb3Sn FECR under development
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