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Abstract
Recent advances with the CERN infrastructure for ma-

chine learning allow to deploy state-of-the-art data-driven
control algorithms for stabilising and optimising particle
accelerator systems. This contribution summarises the re-
sults of the first tests with different algorithms to optimise
the intensity out of the CERN LINAC3 source. The task is
particularly challenging due to the different latencies for the
various control parameters that range from instantaneous to
full response after only ∼30 minutes. Next steps and vision
towards full deployment and autonomous source control will
also be discussed.

INTRODUCTION
The GTS-LHC 14.5 GHz Electron Cyclotron Resonance

(ECR) ion source [1] at the CERN LINAC3 provides differ-
ent heavy ion beams for the LHC, as well as the PS and SPS
fixed target experiments. In the case of the main species of
lead ions, the beams are produced by vaporisation of solid
samples that are heated with an oven in the plasma chamber.
Tuning the various parameters of the source, such as oven
power, to maximise its intensity output as well as ensuring
reproducible intensity during the pulse and on a shot-by-shot
level is non-trivial and is frequently slow due to condition-
ing effects. For example, during commissioning or after a
stop, the oven’s power needs to be slowly ramped up until
lead evaporation is initiated. It is then increased over two to
four weeks to maintain a sufficiently high evaporation rate
until the next oven refill. Figure 1 shows an example of the
reconditioning of the source in May 2018 with the discussed
slow ramp-up of the oven power and non-linear response
of intensity over the course of about 11 h. Various other
parameters need to be adjusted as well as part of this process
that are not indicated in Fig. 1. All of this is usually done
manually.

This paper summarises the first tests of deploying CERN’s
Generic Optimisation Framework [2] to automatically opti-
mise the intensity out of the LINAC3 source with the final
goal of making recovery after oven refills and commission-
ing more efficient and less dependent on singular experts.
Algorithms to stabilise the performance after commissioning
were also part of the investigation.

To date, only preliminary tests of various sample-efficient
optimisation and stabilisation algorithms could be carried
out. However, they were already sufficient to start address-
ing the challenging aspects of time-varying dynamics and
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control knobs that act at significantly different time scales.
Another test is planned towards the end of the 2024 run
where the lessons learned will be incorporated.
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Figure 1: Evolution of the beam current measured by
BCT.ITL05 at the end of the Low Energy Beam Transport
in blue during lead ion beam setup in May 2018. The oven
power (red) needs to be ramped up slowly. In this particular
case this phase took roughly 11 h while tuning other param-
eters in addition.

GENERIC OPTIMISATION FRAMEWORK
AND FRONTEND AT CERN

A significant step towards automating parameter optimisa-
tion and stabilisation was the implementation of the “Generic
Optimisation Framework and Frontend” (GeOFF) in Python
at CERN [2]. GeOFF standardises interfaces for optimi-
sation tasks and provides adapters for various third-party
packages such as SciPy, Stable Baselines 3, Scikit-Optimize,
BoTorch. GeOFF tasks can scale to arbitrary complexity
and depend on any Python package; they can use any con-
trols system and even communicate with external simulation
tools, as long as they have Python bindings. It comes with
a GUI application, readily usable with the CERN control
system in the various control rooms. It allows to add custom
plotting in addition to a pre-defined set of plots that show
the evolution of the objective function and the actors. It
also allows to save the optimisation evolution in terms of
objective function and actors, which was used to produce
the plots in this paper.
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DESCRIPTION OF LINAC3 SOURCE
OPTIMISATION PROBLEM AND FIRST

TESTS

The tests described in this paper were carried out during
a so-called Machine Development (MD) session as part of
the LINAC3 lead ion commissioning phase between July
8-10, 2024. The objective was to optimise the intensity out
of the source measured by the Beam Current Transformer
(BCT) ITL.BCT05 as well as the rms intensity fluctuation
𝜎 over the pulse length, i.e. to maximise the intensity and
minimise its rms. The objective function 𝑦 that yielded the
best results was

𝑦 = (−1) · 𝐼 + 2 · 𝜎 , (1)

where 𝐼 corresponds to the mean intensity measured at
ITL.BCT05 and𝜎 to the standard deviation of the slice of the
intensity pulse of interest for injection into the downstream
elements followed by the Low Energy Ion Ring (LEIR) [3].
The optimisation task was formulated with up to five degrees
of freedom: the currents of the three solenoids that confine
the plasma in the plasma chamber, the voltage of the bias
disc electrode located at the entrance to the plasma cham-
ber, and finally the oxygen gas injection regulated according
to the voltage setting with a feedback controller. The used
parameter ranges are summarised in Tab. 1. Whereas the
effects of the solenoids and bias disc changes were imme-
diately measurable with the BCT, any changes to the gas
injection system would only stabilise after several minutes
and a waiting time had to be applied before reading out the
BCT. See Fig. 2 for the evolution and the "ringing" of the gas
injection measured voltage during one of the optimisation
runs. The waiting times when working with the gas injection
system were either set to 30 s or 120 s. The plots shown
in the following were all from the period with 30 s waiting
time. While 30 s might not be long enough for full decay of
the "ringing", especially for large settings changes, it was
sufficient to allow for convergence for the overall optimisa-
tion together with the faster actors. A more detailed study
on which waiting time to use will have to be carried out in a
future test campaign.

To implement the optimisation task within GeOFF, while
respecting the different delays in response for the various
control knobs, the problem was split into two optimisation
tasks running in parallel and independently with the same
objective function. One task would adjust the "fast" degrees
of freedom (solenoids and bias disc voltage) and another one
would adjust the gas injection and only acquire intensities
and rms after 120 s or 30 s, respectively. In a continuous
control setup during e.g. gas injection adjustments, the "fast"
actors were supposed to catch up with the new conditions of
the source and optimise their settings, while the gas reading
was stabilising. No other synchronisation between the two
optimisation environments was built in during these first
tests.

THE ALGORITHMS
In the following, the different algorithms tested during

the MD will briefly be introduced. The most relevant re-
sults were achieved with Bayesian Optimisation [4] and
Adaptive Bayesian Optimisation [5]. Note that the algo-
rithms BOBYQA [6] for optimisation and Extremum Seek-
ing (ES) [7] for stabilisation were also tested briefly – with
success however only in the case of BOBYQA. However, we
will not discuss BOBYQA and ES results further.

Bayesian Optimisation
Bayesian optimisation (BO) is a powerful black-box opti-

misation algorithm, which learns a probabilistic model of
the objective function with Gaussian processes (GP) [4].
To make use of the model’s uncertainty, the so-called Ac-
quisition Function is optimised, rather than the mean 𝜇(x)
of the objective function. In our case, we used the Upper
Confidence Bound Acquisition Function (UCB):

𝑎(x) = 𝜇(x) +
√︁
𝛽 𝜎(x) , (2)

where 𝜇(x) is the mean of the posterior GP and 𝜎2 (x) the
variance. 𝛽 is a hyperparameter that needs to be tuned for
the specific application. It defines the balance between ex-
ploration and exploitation during the optimisation process.
For the LINAC3 source tests, Bayesian Optimisation was im-
plemented with BoTorch in a custom optimiser available in
GeOFF only for the LINAC3 optimisation environments. To
enforce "smooth" parameter optimisation, proximal biasing
was applied [8].

Adaptive Bayesian Optimisation
To use Bayesian optimisation as a continuous control al-

gorithm and make the algorithm adapt to changes – hence
Adaptive Bayesian Optimisation (ABO), the objective func-
tion can be modelled as a function of the control parameters
x and also as a function of time 𝑡. The kernel function, or
prior covariance, of the GP is chosen such that it can rep-
resent the correlations in the data well. Following [5] the
kernel that we use in ABO is a composite kernel with a
spectral mixture kernel 𝑆 for 𝑡 and the Matern kernel 𝑀 for
x:

𝑘 ( [𝑡1, x1], [𝑡2, x2]) = 𝜃𝑘 × 𝑆(𝑡1, 𝑡2) × 𝑀 (x1, x2) , (3)

where 𝜃𝑘 is the output scale.
ABO was implemented with BoTorch [9] and is again only

available for the LINAC3 environments in GeOFF. To use
ABO for continuous control, the data buffers for conditioning
the GP models need to be truncated. These data buffers are
also stored for subsequent warm-starts such that random (or
any other policy) data collection is not necessary. As for
BO, proximal biasing was used.

FIRST OBSERVATIONS
Figure 3 shows the evolution of the objective function and

the normalised currents of three solenoids during optimisa-
tion with BO. Proximal biasing ensures that the solenoids
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Figure 2: Evolution of the measured gas injection regulation
system voltage during one of the tests on 9th of July described
below. The larger the step size, the larger the excursions are
around the set values. The oscillations settle eventually. See
bottom plot of Fig. 5 for the set values during this phase.

smoothly arrive at the optimum settings avoiding big jumps,
while the noisy objective function is minimised. The inten-
sity after this optimisation was indeed higher than initially
(improvement from 0.45 to 0.5 mA). A similar test with suc-
cessful convergence was also carried out including the bias
disc voltage, indicating that optimisation of the "fast" actors
could be relatively easily automated. An important ingre-
dient for good convergence was to not average over several
acquisitions and let the GP learn the alleatoric uncertainty.
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Figure 3: Bayesian Optimisation for the three solenoids
around the LINAC3 source plasma chamber using proximal
biasing and historical data to condition the GP at the start of
the optimisation. The objective function is a combination of
mean intensity and rms measured during the slice of interest
of the ion pulse, see Eq. (1).

As a next step ABO was tested for the "fast" actors in
combination with optimisation of the slow gas injection sys-
tem. The best configuration was achieved with 𝛽 = 1.5 in
the UCB acquisition function and 𝛽𝑝𝑟𝑜𝑥 = 0.5 for proxi-
mal biasing. Figure 4 shows the evolution of the objective
function as well as the three solenoid settings for this case.
The GP of the algorithm was conditioned with a previously

recorded dataset, thus the solenoids start with good settings
and maintain those for the first roughly 115 iterations. The
sharp increase of the objective function away from the op-
timum is caused by the start of the optimisation of the gas
injection system, which collected its initial data by a linear
ramp of its settings between predefined bounds. See Fig. 2
for the gas injection voltage acquisition and Fig. 5 for the
perspective of the controller during the optimisation of this
slow actor, respectively. The linear ramp instead of the usual
random policy for initial data collection was chosen to min-
imise the excursions of the gas injection regulation system.
The solenoids do not manage to establish the original perfor-
mance for most of the linear ramp of the gas injection system
and stay at the bounds of their allowed ranges (the bounds
correspond to (−1, 1) in the plots as GeOFF works with nor-
malised settings). Together the slow and fast tasks converge
however eventually to an objective value that is not as good
as the initial one, but very close to the optimum obtained
during the optimisation phase. Note that the starting gas
injection setting and corresponding objective function were
not used for building the model, see Fig. 5. This is believed
to be the reason for not getting back to the initial optimum.
The result is promising and indicates that adequate optimisa-
tion of the system gas injection system and solenoids (plus
bias disc) is in principle possible with the used techniques.
If the optimisation routines were synchronised, where in-
stead of running ABO for the fast actors in the shadow, an
optimisation of the fast actors is triggered after each step
of the gas injection system, the global optimum should be
within reach. This would also allow for easier tuning of the
adequate waiting time after changing the settings on the gas
injection system.
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Figure 4: Evolution of objective function (upper plot) and
three solenoids (lower plot, normalised settings) during
Adaptive Bayesian Optimisation. At iteration ∼120, ABO is
launched on the gas injection system, see Fig. 5. The three
solenoids eventually converge to a new optimum given the
changed setting of the gas injection system.
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Table 1: Ranges of the Various Parameters used for LINAC3
Source Optimisation

Parameter Parameter Range Unit
solenoid inj [1100, 1265] A
solenoid cen [1100, 1140] A
solenoid ext [0, 400] A
bias disc [0, 500] V
gas injection [9, 9.6] V

NEXT STEPS
Towards the end of the 2024 run another test to control

the LINAC3 source is foreseen and the lessons learned so far
will be incorporated. Given the results obtained and the ex-
perience of the expert, the optimisation task for the next step
will be implemented as one GeOFF optimisation problem.
The different parameters will be optimised/stabilised in a
hierarchical and sequential manner: the outer loop will run
ABO to optimise the gas injection system; at each iteration
of this outer loop, first the solenoids will be optimised with
BO (conditioned on previous data) and then the bias disc.
The waiting times for the outer loop for the slow gas injec-
tion system will be established dynamically based on the
acquisition of the gas injection regulation voltage together
with the acquisition of the current of the extraction power
supply as additional information.
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Figure 5: Evolution of objective function (upper plot) and
gas injection setting (lower plot, normalised settings) during
Adaptive Bayesian Optimisation. The linear ramp is used to
avoid large excursions of the gas injection system regulator
and "confuse" the "fast" actors that are running ABO in
parallel.

SUMMARY
The LINAC3 ECR ion source at CERN provides heavy

ion beams for the LHC and the PS and SPS fixed target
experiments. Lead ion beams are produced through vapor-
isation of solid samples in a plasma chamber. Optimising

the lead beam intensity out of this source is time consuming,
non-trivial and is usually done manually relying on year-
long experience of a few experts. This paper summarises
the first steps towards automating the source commission-
ing as well as the performance stabilisation thereafter with
algorithms based on Bayesian Optimisation. The CERN
Generic Optimisation Framework and Frontend (GeOFF)
was used as a platform for implementation and test execution
with its ready-made GUI and various features. Particularly
challenging for controlling the LINAC3 source are the differ-
ent latencies in response involved with the various control
knobs. This was addressed by running several optimisa-
tion/stabilisation tasks in parallel, separating the "slow" and
"fast" actors. The first results were promising and showed
that Bayesian Optimisation and Adaptive Bayesian Optimi-
sation are sample-efficient enough and can deal well with
the noisy environment. For guaranteed convergence it was
however proposed for the next test to modify the setup of
optimisation tasks and trigger for each iteration of the slow
system an optimisation of the fast actors and synchronise
the tasks in this manner. Given the results obtained already,
this should allow convergence to the global optimum in a
robust manner and to track changes adequately.
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