

Studies of ECR plasma chamber contamination with accelerated beams and diamond detectors

Brian Roeder

Collaboration: F. Abegglen, J. Arje, G.J. Kim, D.P. May, A. Saastamoinen, G. Tabacaru, S. Yennello

Introduction

- We are currently operating 3 ECR Ion Sources. Provide beam to 2 cyclotrons.
- ECR1 has been operating for 25 years, has provided beams from H to ²³⁸U.
- ECR2 (A-ECR) is dual frequency heated (14.5 GHz and 11.8 GHz).
- CB-ECR is providing charge-bred ion beams for our re-accelerated beams.
- ECR4 is an updated version of ECR1, operating at 6.4 GHz. Ready this year!

CB-ECR background problem

- CB-ECR is made of Al 7075 alloy.
 - 6 % Zinc
 - 2.5% Mg
 - 1.5% Cu
 - < 0.5% Si, Fe, Mn, Ti, Cr, other metals
- Have observed ⁶⁴Zn background multiple times, including in RIBs test.
- ⁶³Cu observed in ⁶³Zn RIB tests.
- Most recent test with ¹⁴N⁴⁺ pilot beam at 24.8 MeV/u observed ⁷⁰Zn, ⁶³Cu, ⁵⁶Fe, ⁴⁹Ti, ³⁵Cl and ²⁸Si.

ECR2 beam background problem

Region of interest near $Q/M \sim 0.35$, many possible beams. Need to be tuning the right one!

- ECR2 has plasma chamber with Al-6061 alloy (cleaner)
 - 0.6 % Si
 - 1.0% Mg
 - 0.25% Cu
 - < 0.2 % Cr, and other metals
- However, ECR2 has run many metals for experimenters (Li, Mg, Cr, Fe, Zr, etc.)
- Developing high charge state beams such as ⁶³Cu²²⁺, ⁷⁸Kr²⁷⁺, ¹⁰⁷Ag²⁹⁺ and ¹²⁴Xe³⁴⁺.
- High charge state ions are low intensity, so background can be a problem.

9/30/2020

Measurement Setup

- Ortec Silicon Detector, 2mm thick (not shown).
- Diamond telescope detector (Applied Diamond Inc.) ΔE 50 μm + E 500 $\mu m,$ mounted on actuator
- DAQ CAEN 1422A preamp and CAEN DT5780 Digitizer Readout with CAEN CoMPASS software.
- Can measure K150 cyclotron accelerated ions from ⁴He up to ¹²⁹Xe with a single setup.

 ⁷⁸Kr²⁷⁺ beam, measured with diamond telescope

Some Results

Beams measured with the Silicon Detector

K150 Cyclotron 9.4 MeV/u SEE Beams

Using detectors, identified high charge state Ag and Xe from our ECR2 ion source. Can use detector setup to improve the beam tunes!

9/30/2020

B.T. Roeder – ECRIS 2020

Background Reduction Attempts

- Silane (SiH₄) coating
 - SiH_4 reacts in the source forming a SiO_2 layer.
 - Ran SiH₄ into CB-ECR for about 48 hours.
 - Measured ⁶⁴Zn background before treatment... Had about 10⁵ p/s background.
 - No initial plasma after treatment, had to run O_2 for ~ 6 hours to restart source.
 - ⁶⁴Zn background still present at similar levels in post-accelerated beam.
 - ENTIRE SYSTEM WAS CONTAMINATED. Had to clean everything!
- Al liner with 1000 series "commercially pure" > 99% Aluminum.
 - Can not machine "pure" Aluminum (too soft).
 - 1050 series Aluminum is 99.5% pure Al, but still contains contamination.
 - Installed a liner into ECR1 (stable beam ECR source). Covered 75% of the surface area of the ion source.
 - NO REDUCTION OF BACKGROUND observed. Still getting background from extraction plate or even the small amount of contamination in the liner.

True Fact, Ion Sources have Memory!

Conclusion

- For weak, high charge state or charge-bred beams, background beams arising from materials or previously used metals can impact beam purity
- Post acceleration beam identification allows one to improve the ion source and cyclotron tuning to purify beam and maximize intensity.
- Diamond detectors have a provided radiation-hard beam measurement method.
- Testing of beam purification methods is ongoing.
 - Thank you for your attention!