

Observation of Electron Cyclotron Instabilities in SECRAL-II Ion Source

Lixuan Li^{1,2}

J. B. Li¹, J. W. Guo¹, W. Lu¹, J. D. Ma¹, Y. C. Feng¹, W. H. Zhang¹, L. T. Sun^{1,2}, D. Hitz¹ and H. W. Zhao^{1,2}

¹Institute of Modern Physics, CAS, Lanzhou 730000, China ²School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 100049,China

2020.9.30

- I. Research aim
- II. Experimental setup
- III. Results
- **IV.** Discussion

Research aim

DElectron cyclotron instabilities threshold

Threshold between stable and unstable regimes

Diagnostic Signals

O. Tarvainen, et al., Rev. Sci. Instrum. 87 (2016)

DResearch aim of this study

Effects of other magnetic field parameters (mirror ratio radial field ..) on electron cyclotron instabilities

Experimental setup

Source parameters	
Beam	Oxygen
Frequency (GHz)	18
Power (W)	1000
Extraction Voltage (kV)	15
Biased Disk Voltage (-V)	10~60
Injection Pressure (mbar)	1~2x10 ⁻⁷

Note: we do not optimize beam current at each data point, just tuning the gas injection and biased disk voltage to make ion source stable (long-term) Typical microwave emission and beam current signals on SECRAL-II when electron cyclotron instability is triggered

The microwave detection setup can been found in J. Li's presentation (1122)

Note: beam normalization is carried out independently for each charge state and open symbols correspond to instability regime

Part 2- constant on axis gradient (~4.5 T/m) and B_r (1.1 T) while varying B_{min}

Part 3- constant B_{min} (0.50 T) and B_r (1.1 T) while varying mirror ratio (i.e. B_{ini} and B_{ext})

Summary: constant *B_{min}* and *B_r* while varying mirror ratio (i.e. *B_{inj}* and *B_{ext}*)

Summary: constant axial magnetic fields while varying B_r

 \square **B**_{min} is the primary magnetic field parameter affecting the appearance of cyclotron instability, but not the only one; mirror ratio and radial field also affect the appearance of cyclotron instability;

□ Effects of magnetic configuration on electron cyclotron instability may provide a physical explanation for the semiempirical magnetic field scaling laws of ECRIS;

□ The trigger of cyclotron instability maybe a combined effect of many magnetic field parameters, further analyses are needed to reveal the inherent link between these parameters and plasma heating ($< \overrightarrow{PB}_{ecr} >$) as well as confinement.

Thanks for your attention!