

Beams with Three-Fold Rotational Symmetry: A Theoretical Study

Chun Yan Jonathan Wong* (ORNL)

Steven Lund (FRIB/MSU)

*Previously from NSCL/MSU which provided significant support to this work

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Beam Inherits Rotational Symmetry of Source / Beam Line

- True in idealized system
 - System identical in different rotated transverse coordinate systems
 - Violated by misalignments and nonideal elements
- Two symmetries that often occur:
 - Cylindrical symmetry
 - Solenoids, einzel lens

- Two-fold rotational symmetry
 - Quadrupole transport

- Notation
 - C_n : n-fold discrete rotational symmetry
 - SO(2): continuous rotational symmetry (also called axisymmetry)

ECR Sextupole Imposes C₃ Symmetry on Beams

[Daniela Leitner (LBNL), CERN Courier]

[ECR simulation results at extraction plane, courtesy of Vladimir Mironov (JINR)]

x [mm]

10

 C_3

 $2\pi/3$ rotation

зò

20

gives same beam

- Beam envelope and emittance depend on choice of axis?
- x-, y-emittances unequal and change upon coupling in solenoid transport?

10

0

-10

-20

-30

-20

-30

-10

[mm]

 \succ

Rotational Symmetry Imposes Constraints on Transverse Beam Moments

• Rotational symmetry: there are angles θ for which beam moments are invariant under the transformation

$$\begin{pmatrix} x \\ x' \\ y \\ y' \end{pmatrix} \mapsto \begin{pmatrix} \cos\theta & 0 & \sin\theta & 0 \\ 0 & \cos\theta & 0 & \sin\theta \\ -\sin\theta & 0 & \cos\theta & 0 \\ 0 & -\sin\theta & 0 & \cos\theta \end{pmatrix} \begin{pmatrix} x \\ x' \\ y \\ y' \end{pmatrix} \equiv \mathbf{R} \begin{pmatrix} x \\ x' \\ y \\ y' \end{pmatrix} \quad \bullet \text{ For } \mathcal{SO}(2) \text{ beam, any } \theta$$

• Same transformation in complex coordinates

$$\begin{pmatrix} w \\ \overline{w} \\ w' \\ \overline{w'} \\ \overline{w'} \end{pmatrix} \equiv \begin{pmatrix} x+iy \\ x-iy \\ x'+iy' \\ x'-iy' \end{pmatrix} \qquad \qquad \begin{pmatrix} w \\ \overline{w} \\ w' \\ \overline{w'} \end{pmatrix} \mapsto \begin{pmatrix} e^{i\theta} & 0 & 0 & 0 \\ 0 & e^{-i\theta} & 0 & 0 \\ 0 & 0 & e^{i\theta} & 0 \\ 0 & 0 & 0 & e^{-i\theta} \end{pmatrix} \begin{pmatrix} w \\ \overline{w} \\ w' \\ \overline{w'} \end{pmatrix}$$

Deriving Constraints via Complex Moments

• Rotational symmetry: $\langle w^{a_1}\overline{w}^{a_2}w'^{a_3}\overline{w'}^{a_4}\rangle = e^{i(a_1-a_2+a_3-a_4)\theta} \langle w^{a_1}\overline{w}^{a_2}w'^{a_3}\overline{w'}^{a_4}\rangle$

 $e^{i(a_1-a_2+a_3-a_4)\theta} \neq 1 \longrightarrow \left\langle w^{a_1}\overline{w}^{a_2}w'^{a_3}\overline{w'}^{a_4} \right\rangle = 0 \quad \text{(two constraints)}$

- For $\theta = 2\pi/3$ Re $(\langle ww \rangle) = 0 \Rightarrow \langle xx \rangle = \langle yy \rangle$ Im $(\langle ww \rangle) = 0 \Rightarrow \langle xy \rangle = 0$ Re $(\langle ww' \rangle) = 0 \Rightarrow \langle xx' \rangle = \langle yy' \rangle$ Im $(\langle ww' \rangle) = 0 \Rightarrow \langle xy' \rangle = -\langle x'y \rangle$ Re $(\langle w'w' \rangle) = 0 \Rightarrow \langle x'x' \rangle = \langle y'y' \rangle$ Im $(\langle w'w' \rangle) = 0 \Rightarrow \langle x'y' \rangle = 0$
- Detailed treatment: Moment constraints in beams with discrete and continuous rotational symmetry

(PRAB, to be submitted)

Jonathan C. Wong^{*} National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824, USA

Steven M. Lund Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824, USA

C₃ Beams are Effectively Axisymmetric

- C₃ beams and SO(2) beams are indistinguishable in terms of 2nd order moments
 - Their 2nd order moments have the exact same properties
 - Distinguishable in terms of higher order moments

C_3 Beams have Identical RMS Envelope and Emittance along Any Direction

 $u(\theta) = x\cos\theta + y\sin\theta$

- Properties of 2^{nd} order moments of SO(2) beam (which are shared by C_3 beams):
 - $\langle uu \rangle = \langle xx \rangle$

$$- \langle uu' \rangle = \langle xx' \rangle$$

-
$$\langle u'u' \rangle = \langle x'x' \rangle$$

For all θ

- Projected phase space distribution in u-u' phase space changes significant with θ , but rms phase space ellipse remain identical
- Consequence of symmetry alone
 - True with multi-species space charge, chromatic aberrations, radial field nonlinearities

Application to FRIB Front End Artemis Beamline

• Beam should have C_3 symmetry up to non-zero dipole field

space scanners

- Back projection found $\varepsilon_x \neq \varepsilon_y$ before dipole
 - Sign and magnitude depends on solenoid strengths

Cause of $\varepsilon_x \neq \varepsilon_y$ is Broken Symmetry

- $\varepsilon_x \neq \varepsilon_y$ cannot be caused by triangulated beam or x-y coupling from ideal solenoid
- Only one fundamental cause: broken symmetry

x, y phase space scanners

- Motivated search for source of broken symmetry
 - Suggested by ECR Team: Sol-1 has strong multipole fields due to leads design
 - Proved by Alexander Plastun via magnet simulations

Constraints on 3^{rd} Order Moments of C_3 Beams

• Use same technique to derive 12 constraints

$$\langle xxx \rangle = -\langle xyy \rangle \qquad \langle xyy' \rangle = \langle x'yy \rangle = -\langle xxx' \rangle \langle yyy \rangle = -\langle xxy \rangle \qquad \langle xx'y \rangle = \langle xxy' \rangle = -\langle yyy' \rangle \langle x'x'x' \rangle = -\langle x'y'y' \rangle \qquad \langle x'yy' \rangle = \langle xy'y' \rangle = -\langle xx'x' \rangle \langle y'y'y' \rangle = -\langle x'x'y' \rangle \qquad \langle xx'y' \rangle = \langle x'x'y \rangle = -\langle yy'y' \rangle$$

• In comparison, all 3^{rd} order moments vanish for C_2 and SO(2) beams

Conclusion

- C_3 symmetry guarantees equal x, y envelopes and emittances
 - 2nd order moments have same properties as those of SO(2) beam
 - Failure to hold suggests broken symmetry (e.g. misalignments, nonideal elements)
- Theoretical results successfully clarified beam dynamics at FRIB
 - Arguments derived purely from symmetry
- Benchmark ECR simulations?
 - Consistent with model provided by Vladimir Mironov (JINR) in preliminary comparisons

