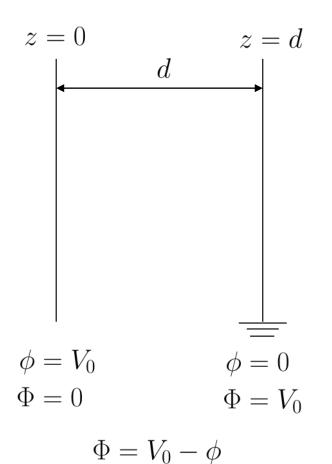


Multi-Species Child-Langmuir Law with Application to ECR Ion Sources

Chun Yan Jonathan Wong* (ORNL)

Steven Lund (FRIB/MSU)

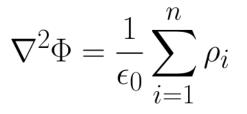
*Previously from NSCL/MSU which provided significant support to this work


ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Classical Single-Species Child-Langmuir (CL) Law

- Maximum extractable ion current at space-charged limited flow
 - Infinite planar diodes
 - Cold beam

• Solution: current density
$$J = \frac{4}{9}\epsilon_0 \sqrt{2\frac{q}{m}} \frac{V_0^{3/2}}{d^2}$$


Generalize to Multi-Species Beam

Single-Species (3 equations)

Poisson Equation

$$\nabla^2 \Phi = \frac{1}{\epsilon_0} \rho$$

Multi-Species (2n+1 equations)

Continuity Equation

$$J = \rho v = \text{const}$$

 $J_i = \rho_i v_i = \text{const}$

Energy Conservation

$$\Phi = \frac{1}{2} \frac{m}{q} v^2 \qquad \qquad \Phi = \frac{1}{2} \frac{m_i}{q_i} v_i^2$$

Possible to Recast into Single-Species Form?

 $\rho = \sum_{i=1}^{n} \rho_i \qquad J = \sum_{i=1}^{n} J_i$ Classical CL solution immediately follows: --3/2

$$J = \frac{4}{9} \epsilon_0 \sqrt{2 \left(\frac{q}{m}\right)_{\text{eff}} \frac{V_0^{5/2}}{d^2}}$$

Effective Single-Species (3 equations) $\nabla^2 \Phi = \frac{1}{c}\rho$

$$J = \rho v_{\text{eff}}$$

$$\Phi = \frac{1}{2} \left(\frac{m}{q}\right)_{\text{eff}} v_{\text{eff}}^2$$

Multi-Species (2n+1 equations)

$$\nabla^2 \Phi = \frac{1}{\epsilon_0} \sum_{i=1}^n \rho_i$$

 $J_i = \rho_i v_i = \text{const}$

$$\Phi = \frac{1}{2} \frac{m_i}{q_i} v_i^2$$

CAK RIDGE National Laboratory

Solution to Multi-Species Child-Langmuir Equation

- Effective charge-to-mass ratio $\left(\frac{m}{q}\right)_{\text{eff}} = \left(\sum_{i=1}^{n} c_i \sqrt{\frac{m_i}{q_i}}\right)^2$ $c_i = \frac{J_i}{J}$ is current weight of the i-th species with $\sum_{i=1}^{n} c_i = 1$
- For ECR, current weights c_i can be obtained from measured CSD currents

• Multi-species solution:
$$J = 5.47 \times 10^{-8} \left(\frac{Q}{A}\right)_{\text{eff}}^{1/2} \frac{V_0^{3/2}}{d^2} \left[\text{A/m}^2\right] \left(\frac{Q}{A}\right)_{\text{eff}} = \left(\frac{q[\text{e}]}{m[\text{amu}]}\right)_{\text{eff}}$$

• For circular aperture: $I = \pi R^2 J = 5.43 \left(\frac{Q}{A}\right)_{\text{eff}}^{1/2} \left(\frac{R}{d}\right)^2 (V_0[\text{kV}])^{3/2} [\text{mA}]$

R =source radius

Example: Artemis Source at NSCL/MSU

• Artemis A ¹⁶O

lon	А	Q	Q/A	I(emA)	$c_i = I/I_{total}(\%)$
0	16	1	0.0625	0.107	14.41
0	16	2	0.125	0.092	12.35
0	16	3	0.1875	0.065	8.80
0	16	4	0.25	0.164	22.07
0	16	5	0.3125	0.143	19.19
0	16	6	0.375	0.139	18.74
0	16	7	0.4375	0.031	4.17
0	16	8	0.5	0.002	0.28
	-	ſotal:		0.743	100
		O 16 O 16	O 16 1 O 16 2 O 16 3 O 16 4 O 16 5 O 16 6 O 16 7	O1610.0625O1620.125O1630.1875O1640.25O1650.3125O1660.375O1670.4375O1680.5	O 16 1 0.0625 0.107 O 16 2 0.125 0.092 O 16 3 0.1875 0.065 O 16 4 0.25 0.164 O 16 5 0.3125 0.143 O 16 6 0.375 0.139 O 16 7 0.4375 0.031 O 16 8 0.5 0.002

Compare $I_{\text{drain}} \approx 1 \text{ to } 2 \text{ mA}$

(Courtesy Bryan Isherwood)

(drain current also has contribution from e⁻)

CAK RIDGE National Laboratory

6

Example: VENUS Source at LBNL Q/A lon Α Q U 238 25 0.105 • VENUS ²³⁸U with ¹⁶O support gas 238 0.109 26 U 238 0.113 U 27 0.118 U 238 28 $\left(\frac{Q}{A}\right)_{\text{eff}} = \left(\sum_{i=1}^{n} c_i \sqrt{\frac{A_i}{Q_i}}\right)^{-2} \qquad \approx 0.131$ 238 29 0.122 U 238 30 0.126 U 238 0.130 U 31 U 238 32 0.134 238 33 0.139 U $\frac{R}{d} = \frac{4 \text{ mm}}{40 \text{ mm}} = 0.1$ $V_0 = 30 \text{ kV}$ 238 34 0.143 U Take 238 35 0.147 U 238 U 36 0.151 238 0.155 U 37 Multi-species 238 38 0.160 U I = 3.23 mACL current: 238 39 0.164 U 238 0.168 U 40 0.063 Ο 16 $I_{\text{total}} = 2.97 \text{ mA}$ Compare 16 0.125 Ο 2 Ο 16 3 0.188 Ο 16 4 0.250 $I_{\rm drain} \approx I_{\rm total}$? (data not available) Total

(Eduard Pozdeyev; measured at LBNL)

I(emA)

0.035

0.051

0.068

0.088

0.115

0.15

0.175

0.193

0.21

0.205

0.178

0.142

0.11

0.072

0.043

0.031

0.3

0.3

0.3

0.2

2.97

 $c_i = I/I_{total}(\%)$

1.18

1.72

2.29

2.97

3.88

5.06

5.90

6.51

7.08

6.91

6.00

4.79

3.71

2.43

1.45

1.05

10.11

10.11

10.11

6.74

100

SPALLATION National Laboratory

Single- and Multi-Species Child-Langmuir Law Predictions vs Measurements

- Use charge and mass of target species in single-species case
- Single- and Multi-species predictions can differ by $\approx 15\%$
 - Production modes where the difference is even larger?

	Artemis ¹⁶ O	Venus ²³⁸ U
Target Species	1604+	238U33+
I singles-species CL Law	2.43 mA	3.32 mA
I multi-species CL Law	2.12 mA	3.23 mA
$\sum_n I_n$ measured at Faraday Cup	0.743 mA	2.97 mA
I _{drain} measured	1 to 2 mA	ŚŚ

• Operations appear close to space-charge limited flow

Conclusion

- Multi-species Child-Langmuir Law gives more accurate limit on maximum extractable current from ECR
 - Further corrections: initial temperature, e⁻ neutralization, 2D geometry
- Artemis and VENUS seem close to idealized Child-Langmuir limit
- Does total extracted current scale as $V_0^{3/2}$?
 - Current weights may be function of V_0 which changes effective ratio
 - What does it mean if individual species do not scale as $V_0^{3/2}$?
 - Use ECR plasma scaling relations to constrain c_i and enhance utility?