A GUIDING CENTRE APPROXIMATION APPROACH FOR THE SIMULATION OF ELECTRON TRAJECTORIES IN ECR AND MICROWAVE ION SOURCES

Antonio MENDEZ¹, Thomas THUILLIER¹, Tiberiu MINEA²

¹Université Grenoble-Alpes, CNRS-IN2P3, Grenoble Institute of Engineering (INP), LPSC, 38000 Grenoble, France ²Université Paris-Saclay, CNRS-IN2P3, LPGP, 91405 Orsay, Île de France, France

ECRIS Workshop, Michigan, September 28th-30th 2020

Introduction

- Objective: Investigation of the validity and stability of the Guiding Centre (GC) algorithm to speed up particle propagation in magnetised plasma simulation.
- > 2 ion sources to consider:
 - ECRIS (Phoenix V2) confinement up to ~1ms.
 - Microwave discharge (MDIS) ion source (SILHI@GANIL) confinement ~1µs.

Methodology:

- Implementation of two, otherwise identical, algorithms in c to simulate electron trajectories by Boris and the GC approximation.
- Consistency check and computation time measurement of trajectories for equivalent initial conditions with different time-steps (dt).
- Identify a range of validity for dt.

Implementation

Boris algorithm

- > The standard for magnetised plasma simulations.
- Second order, explicit method. Energy conserving while only a magnetic field is present.
- > For B= 1T, T_B =1/ ω_B ~35ps → dt~3ps.

$$\frac{\mathbf{u}^{n+1} - \mathbf{u}^{n}}{\Delta t} = \underbrace{\frac{q}{m} \left(\mathsf{E}(\mathsf{x}^{n+\frac{1}{2}}) + \left(\frac{\mathbf{u}^{n+1} + \mathbf{u}^{n}}{2\gamma^{n+\frac{1}{2}}}\right) \times \mathsf{B}(\mathsf{x}^{n+\frac{1}{2}})\right)}_{\text{Discretised Lorentz force with:}} \Rightarrow \mathsf{B}(\mathsf{x}^{n+\frac{1}{2}})) \Rightarrow \mathsf{U}^{n+1} = \mathsf{U}^{n} + \frac{q\Delta t}{2m} \mathsf{E}(\mathsf{x}^{n+\frac{1}{2}}) \times \mathsf{S}(\mathsf{x}^{n+\frac{1}{2}}) = \mathsf{U}^{n+1} + \mathsf{U}^{n})/2\gamma^{n+\frac{1}{2}}$$
with:
$$\underbrace{\mathsf{U}^{n} = \mathsf{U}(t^{n} - \Delta t/2) = \gamma^{n} \mathsf{V}(t^{n} - \Delta t/2)}_{\text{Proper velocity}} \text{ and } \underbrace{\Delta t = \frac{2\pi m_{e}[eV]}{c^{2}B_{min} \, \mathrm{Np}}}_{\text{T}_{Bmin}/\,\mathrm{Np}}$$
Np is the number of points to calculate per orbit at B_{min}

Guiding Centre (GC) approximation

Condition:

- The magnetic dipole moment (µ) is an adiabatic invariant if the motion along the plasma chamber is slow compared to the cyclotron motion.
- Equivalently, the Larmor radius should be much smaller than the length scale of ∇B.

Phoenix V2 ECRIS

- Compact ECRIS commissioned for the SPIRAL 2 accelerator.
- > 0.6L plasma chamber volume (L204mm , Ø63mm)
- Operation frequency of 18GHz

Phoenix V2 min-B field

Map files provided to simulation

- 2D for axisymmetric solenoidal fields
- 3D for hexapolar fields

0cm 0.64-7 1 T1.5 T1.3 T **2.1** T "yuuuuuuuuuuuu **-2**cm 1.3.T -10cm -5cm 0cm 5cm B[T] 0.5 1.5 2.0 1.0 0

Figure: Phoenix V2 magnetic field and it's gradient, longitudinal cross section map

Figure: Confined electron orbit components

International Workshop on ECR Ion Sources, Michigan, September 28th-30th 2020, USA

)BLE | MODANE 0.01 Х x 0.00 -0.01 0.02 0.04 -0.02 0.00 Ζ 0.01x0.00 Х -0.01-0.02 0.00 0.02 Z -0.010.04 0.01

Figure: Confined electron orbit 3D plot

Good agreement between Boris and GC with ~1µs of propagation.

ECR orbit analysis (FFA)

- GC algorithm ~20 times more computationally expensive per step.
 - ~100 times larger timestep rends it faster.
- The GC trajectories are stable up to a 100ps time-step, broken at a 1000ps.
- T_{boris} = Boris computation time

ECR orbit analysis (CTA)

- The observed disphasement is evident
- Good agreement between Boris and GC
- This orbit is one of the hardest for GC, (high axial oscillation frequency)
- Stable at this time-scale

Figure: Boris-GC orbit residual at corresponding propagation times.

Energy conserved with both methods

International Workshop on ECR Ion Sources, Michigan, September 28th-30th 2020, USA

Figure: Boris-GC orbit residual at corresponding propagation times.

ECR confinement

- Good agreement for the confined electron distribution with both propagation methods
 - Sample size 1000, largest valid dt (10⁻¹⁰s for GC and 10⁻¹²s for Boris)

GC propagated e⁻

SILHI@GANIL ion source

- 2.45GHz operation frequency
- Microwave discharge ion source (MW)
- > ~0.1T maximum solenoidal magnetic field. (2D map given)
- No magnetic confinement, one magnetic mirror towards extraction

Figure: SILHI source with permanent magnets (CEA/IRFU/GANIL)

Trapped orbit in SILHI (one bounce)

- Very good qualitative agreement.
- A one bounce orbit chosen as it is one of the most challenging examples.
- A typical energy electron of ~1eV is confined for ~1µs. In the absence of interaction

Figure: One bounce electron orbit components

Trapped orbit analysis

- > 10 times larger timestep rends it faster.
- The GC trajectories stable up to a 1000ps time-step, broken at a 10⁴ps.
 - GC up to ~10 times faster when compared to Boris.

Figure: Boris-GC orbit residual at corresponding propagation times.

GC algorithm validity

Figure: Validity condition for the GC algorithm for ECRIS and MDIS typical orbit

The GC algorithm is more suitable for a MDIS (SILHI type) source than for an ECRIS

Conclusions and prospects

- The GC algorithm can accurately reproduce electron trajectories in the domain of both studied ion sources
 - PHOENIX V2 ECRIS: B=1T, $T_e \sim 1 \text{keV}$, volume=0.6L
 - SILHI@GANIL: B=0.1T, $T_e \sim 1eV$, volume=0.6L
- The GC algorithm can provide an advantage in terms of computation time for particle plasma simulations.
 - This advantage is greater in a flat field, as observed for SILHI. The time step can be increased by a factor of 10³ with a computation time two orders of magnitude smaller with respect to Boris.
 - For the Phoenix V2 ECRIS the gains are more modest, with a timestep increased by a factor of 10² and one order of magnitude gain in computation time.
- A smart switcher for orbit integration could be implemented, where the GC approximation is used with a large time-step when valid and a high time resolution isn't required.

References

- W. Harman, Fundamentals of electronic motion, ser. McGraw-Hill electrical and electronic engineering series. McGraw-Hill, 1953, pp. 109–119. [Online]. Available: https://books.google.fr/books?id=Ysc8AAAAIAAJ.
- [2] B. Ripperda, O. Porth, C. Xia, and R. Keppens, "Reconnection and particle acceleration in interacting flux ropes - I. Magnetohydrodynamics and test particles in 2.5D", MNRAS, vol. 467, pp. 3279–3298, May 2017. DOI: 10.1093/mnras/stx379. arXiv: 1611.09966 [astro-ph.HE].
- [3] R. Trassl, "Ecr ion sources", in. Jan. 2003, vol. 1, pp. 3–37, ISBN: 978-90-481-6402-8. DOI: 10.1007/978-94-017-0542-4_1.
- H. de Blank, "Guiding center motion", Fusion Science and Technology, vol. 45, pp. 47–54, Mar. 2004. DOI: 10.13182/FST04-A468.
- [5] C. Peaucelle, I. Lyon, F. J Angot, P. Grandemange, T. Lamy, and T. Thuillier, "First a/q= 3 beams of phoenix v2 on the heavy ions low energy beam transport line of spiral2", , Jul. 2010.
- [6] B. Ripperda, F. Bacchini, J. Teunissen, C. Xia, O. Porth, L. Sironi, G. Lapenta, and R. Keppens, "A Comprehensive Comparison of Relativistic Particle Integrators", *ApJS*, vol. 235, no. 1, 21, p. 21, Mar. 2018. DOI: 10.3847/1538-4365/aab114. arXiv: 1710.09164 [astro-ph.IM].
- P. O. Vandervoort, "The relativistic motion of a charged particle in an inhomogeneous electromagnetic field", Annals of Physics, vol. 10, no. 3, pp. 401-453, 1960, ISSN: 0003-4916. DOI: https://doi.org/10.1016/0003-4916(60)90004-X. [Online]. Available: http://www.sciencedirect.com/science/article/pii/000349166090004X.
- [8] T. G. Northrop, "Adiabatic charged-particle motion", Reviews of Geophysics, vol. 1, no. 3, pp. 283–304, 1963. DOI: 10.1029/RG001i003p00283. eprint: https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/RG001i003p00283. [Online]. Available: https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/RG001i003p00283.
- [9] J. Rossbach and P. Schmueser, "Basic course on accelerator optics", Conf. Proc., vol. C9209071, p. 13, 1992.
- H. Qin, S. Zhang, J. Xiao, J. Liu, Y. Sun, and W. M. Tang, "Why is boris algorithm so good?", *Physics of Plasmas*, vol. 20, no. 8, p. 084503, 2013. DOI: 10.1063/1.4818428. eprint: https://doi.org/10.1063/1.4818428. [Online]. Available: https://doi.org/10.1063/1.4818428.
- [11] M. H, I. Saidu, and M. Waziri, "A simplified derivation and analysis of fourth order runge kutta method", International Journal of Computer Applications, vol. 9, Nov. 2010. DOI: 10.5120/1402-1891.
- [12] D. Eberly, "Derivative approximation by finite differences", Geometrictools.com, Sep. 2010. [Online]. Available: https://www.geometrictools.com/Documentation/FiniteDifferences.pdf.

APPENDIX

SILHI@GANIL B field and gradient

GC approximation validity by electron's kinetic energy

T [eV]	γ	v [m/s]	~v_ [m/s]	B [T]	∇ B [T/m]	ρ [μm]	В/∇В	(B/∇B)/p
1	1.000002	593097	342425	0.64	27	3	0.024	7792
10	1.000020	1875511	1082827	0.64	27	10	0.024	2464
100	1.000196	5930105	3423748	0.64	27	30	0.024	779
1,000	1.001957	18727914	10812566	0.64	27	96	0.024	246
10,000	1.019570	58455268	33749165	0.64	27	306	0.024	78
100,000	1.195695	164352596	94889016	0.64	27	1008	0.024	24
1,000,000	2.956955	282128500	162886965	0.64	27	4279	0.024	6

Table: ECRIS near ECR region

T [eV]	γ	v [m/s]	~v_ [m/s]	B [T] ∇B [T/m]	ρ [μm]	B/∇B	(B/∇B)/p
1	1.000002	593097	342425	0.102 0.3	19	0.340	17813
10	1.000020	1875511	1082827	0.102 0.3	60	0.340	5633
100	1.000196	5930105	3423748	0.102 0.3	191	0.340	1781
1,000	1.001957	18727914	10812566	0.102 0.3	604	0.340	563
10,000	1.019570	58455268	33749165	0.102 0.3	1918	0.340	177
100,000	1.195695	164352596	94889016	0.102 0.3	6324	0.340	54
1,000,000	2.956955	282128500	162886965	0.102 0.3	26848	0.340	13

Table: MDIS near plasma chamber centre