

Influences of Magnetic Field Parameters on ECRIS Plasma Characteristics

J. Li¹

L. X. Li^{1,2}, B. S. Bhaskar^{3,4}, V. Toivanen³, O. Tarvainen^{3,5}, D. Hitz¹, L. B. Li¹, W. Lu¹, H. Koivisto³, T. Thuillier⁴, J. W. Guo¹, X. Z. Zhang^{1,2}, H. Y. Zhao^{1,2}, L. T. Sun^{1,2} and H. W. Zhao^{1,2}

¹Institute of Modern Physics (IMP), Chinese Academy of Sciences, Lanzhou 730000, China
 ²School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
 ³University of Jyväskylä, Department of Physics (JYFL), 40500 Jyväskylä, Finland
 ⁴Laboratoire de Physique Subatomique et de Cosmologie, 53 avenue des Martyrs, 38026 Grenoble Cedex, France
 ⁵STFC ISIS Pulsed Spallation Neutron and Muon Facility, Rutherford Appleton Laboratory, Harwell, OX110QX, UK

The 24th International Workshop on ECR Ion Source East Lansing, USA, September 28th, 2020

- I. Quick overview
- **II. Experimental setup**
- **III. Investigation and results**
- **IV. Discussion and conclusion**

Quick overview

Correlation of magnetic field parameters to bremsstrahlung spectral temperature *T_s* is not yet clear

minimum magnetic field B_{min} and gradient at resonance zone \overline{PB}_{ecr} are key parameters on T_s

Benitez J et al 2017 IEEE Trans. Plasma Sci. 45 1746–54

Zhao H Y et al 2009 Plasma Sources Sci. Technol. 18 025021

DPossible correlation between bremsstrahlung spectra and the appearance of electron cyclotron instabilities are still unknown

SECRAL-II ion source

	GM cooler	Key parameters	
SECRAL-II		ω _{rf} (GHz)	18-28
	He recondenser	Axial Field Peaks (T)	3.7 (Inj.), 2.2 (Ext.)
Sextupole	LHe reservoir	Mirror Length (mm)	420
Solenoids		No. of Axial SNs	3
		B _r at Chamber Inner Wall (T)	2.0
		Magnet Cooling	LHe bathing
	┝──┘╘══╧╴	Chamber ID (mm)	125.0
	Extraction	Dynamic cooling power (W)	~6
Plasma chamber			

Bremsstrahlung detection system

Collimating System

- I. Thick target bremsstrahlung
- II. Secondary radiation

I. Calibration applied

II. Spectra corrected for detector efficiency

Spectral Power $j(\hbar\omega) \propto \exp(-\hbar\omega/T_s)$

Microwave signal measurement system

>Driven by hot electrons interacting resonantly with electromagnetic plasma waves

>A characteristic feature (independent on the mode) is **emission of microwaves**

Energy of microwave emission, E_{μ} , is described by growth and damping rates, Γ and Δ

$$\frac{dE_{\mu}}{dt} \approx (\Gamma - \Delta)E_{\mu}$$
T is proportional to the anisotropy of the EVDF
$$\Gamma \propto \frac{n_{e,hot}}{n_{e,cold}}$$

Exponential growth of instability amplitude when $\Gamma > \Delta$

Example of microwave signal associated with electron cyclotron instability on SECRAL-II ⁻⁸⁻

Beam	Хе
Frequency (GHz)	18、24
Power (w)	1500
Extraction Voltage (kV)	20
Biased Disk Voltage (-V)	40-50
Injection Pressure (mbar)	1~2x10 ⁻⁷

Experimental results- part 1 Constant B_{inj} , B_{ext} and B_r while varying B_{mi}

Experimental results- part 1 Constant B_{inj} , B_{ext} and B_r while varying B_{mi}

IMP

Experimental results- part 2 Constant on-axis $D_{B_{ecr}}$ and B_{r} while varying B_{min}

Experimental results- part 3 Constant B_{min} and B_r while varying on-axis B_e IMP 2.5 18GHz 50 B_{inj}: 1.06-2.41 T 49 2.0 B_{ext}: 1.10-1.50 T B-Field on Axis (T) *B_r*: 1.05 T 48 *B_{min}*: 0.40 T 47 1.5 **(keV)** 46 د 45 1.0 44 43 B_{ecr}@18GHz 0.5 42 41 500 200 400 600 700 7.0 100 300 800 900 5.0 5.2 5.4 5.6 5.8 6.0 6.2 6.4 6.6 6.8 Z (mm) Gradient on axis (T/m)

Experimental results- part 4 Constant B_{inj} , B_{ext} and B_{min} while varying B_r

Discussion -Correlation between *T_s* and electron cyclotron instabilities

Discussion -Correlation between *T*, and electron cyclotron instabilities

Discussion -How to understand apparent linear B_{min} dependence on T_s Electron energy gain in single resonance crossing depend strongly on PB_{mar}

Effective resonance width

depend strongly on PB_{ecr} rather than B_{min}

Constant on-axis DB_{ecr} and B_r while varying B_{min}

Constant B_{inj}, B_{ext} and B_r while varying B_{min} -17-

Discussion -Plasma confinement

Constant B_{min} and B_r while varying on-axis PB_{ecr}

Discussion -Plasma confinement

Constant B_{inj} , B_{ext} and B_{min} while varying B_r

B_{last} defines overall magnetic confinement

f (GHz)	B _{inj} (T)	B _{min} (T)	<i>В_{ех}</i> (Т)	<i>В</i> _r (Т)	< 1⁄7B _{ecr} > (T/m)	B _{last} (T)
24 3.00			1.98	1.35	9.09	1.05
				1.40	9.13	1.09
		3.00 0.60		1.44	9.18	1.13
	3.00			1.53	9.29	1.21
				1.62	9.39	1.29
			1.70	9.50	1.37	
				1.78	9.61	1.45

Weak effect of < PB_{ecr} >

Conclusion

- I. Bremsstrahlung spectral temperature T_s increases approximately linearly with the increase of B_{min}/B_{ecr} up to ~ 0.8 and then saturates with the appearance of electron cyclotron instabilities, which suggests that periodic bursts of energetic electrons escaping the magnetic confinement will limit the increase of the energy content carried by the hot electron population and eventually lead to a saturation of T_s ;
- II. Increasing B_{min} corresponds to decreasing $\langle B_{ecr} \rangle$ although the on-axis B_{ecr} remains constant, which shows the inherent link between B_{min} and $\langle B_{ecr} \rangle$, and thus provides a viewpoint that is more coincident with theoretical studies to understand the apparent linear B_{min} dependence and the appearance of electron cyclotron instabilities;
- III. T_s decreases with the increasing of gradient (on-axis $T_{B_{ecr}}$ and $T_{B_{ecr}}$) at relatively low mirror ratio and is insensitive to the gradient at high mirror ratio when B_{min} is constant, which indicates that T_s depends on not only electron heating, but also depends on electron confinement. This view is supported by the dependence of T_s on the radial confinement.

Acknowledgement

- J. Benitez, LBNL
- D. Xie, LBNL

Thanks for your attention!

Appendix

XR-100-CdTe Detector

Detector type	Cadmium Telluride (CdTe) Diode
Detector areas	5 x 5 mm (25 mm²)
Detector thickness	1 mm
Energy resolution @ 122 keV, ⁵⁷ Co	<1.5 keV FWHM, typical
Detector window	Be: 4 mil thick (100 μm)
Energy range	10 – 300 keV
Detector efficiency	See below

8473C Low-Barrier Schottky Diode Detector, 10 MHz to 26.5 GHz

Sold By: Keysight - Usually arrives in 7 weeks Authorized Sales Partners - Check availability

View Data Sheet 🔻

Visit Technical Support

Images

Overview &	Options &	Document	
Features	Accessories	Library	

Key Features & Specifications

Superior RF Performance

- Frequency response: ±0.3 dB to 12.4 GHz, ±0.6 dB to 20 GHz, ±1.5 dB from a -3.3 dB linear slope starting at 20 GHz to 26.5 GHz
- Maximum SWR: 1.2 to 4 GHz, 1.5 to 18 GHz, 2.2 to 26.5 GHz
- Low-level sensitivity: > 0.5 mV/uW to 18 GHz, > 0.18 mV/uW to 26.5 GHz
- Maximum operating input power: 200 mW
- Typical short-term maximum input power (< 1 minute): 1 W
- Noise: < 50 uV
- Output polarity: negative
- Input connector: 3.5 mm male

Description

The Keysight 8473C Low-Barrier Schottky Diode (LBSD) detector has been widely used for many years in a variety of applications including leveling and power sensing. It offers good performance and ruggedness. Matched pairs (Option 001) offer very good detector tracking.

Appendix

Difference (with or without background subtraction) of T_s is less than 0.16% **D**All data presented in this talk are spectra without background subtraction

Appendix

The solenoid field model is constructed by fitting a sixth order polynomial Bz(z) to on axis magnetic field

The off-axis solenoid field is evaluated with a standard expansion

$$B_{z}(r,z) = A_{0} + A_{1}z + A_{2}\left(z^{2} - \frac{r^{2}}{2}\right) + A_{3}\left(z^{3} - \frac{3r^{2}z}{2}\right)$$

$$+ A_{4}\left(z^{4} - 3r^{2}z^{2} + \frac{3r^{4}}{8}\right) + A_{5}\left(z^{5} - 5r^{2}z^{3} + \frac{15r^{4}z}{8}\right)$$

$$+ A_{6}\left(z^{6} - \frac{15r^{2}z^{4}}{2} + \frac{45r^{4}z^{2}}{8} - \frac{5r^{6}}{16}\right), \quad (A1)$$

$$B_{r}(r,z) = -A_{1}\frac{r}{2} - A_{2}rz - A_{3}\left(\frac{3rz^{2}}{2} - \frac{3r^{3}}{8}\right)$$

$$- A_{4}\left(2rz^{3} - \frac{3r^{3}z}{2}\right) - A_{5}\left(\frac{5rz^{4}}{2} - \frac{15r^{3}z^{2}}{4} + \frac{5r^{5}}{16}\right)$$

$$- A_{6}\left(3rz^{5} - \frac{15r^{3}z^{3}}{2} + \frac{15r^{5}z}{8}\right), \quad (A2)$$

The sextupole field model is constructed by fitting a linear combination of cylindrical multipoles

$$B_r(r,\theta) = \sum_i J_i \left(\frac{r}{r_{\text{ref}}}\right)^{i-1} \cos(i\theta), \qquad (A3)$$
$$B_\theta(r,\theta) = \sum_i -J_i \left(\frac{r}{r_{\text{ref}}}\right)^{i-1} \sin(i\theta), \qquad (A4)$$