

Stable and Intense ⁴⁸Ca Ion Beam Production with a Microwave Shielded Oven and an Optical Spectrometer as Diagnostic Tool

FABIO MAIMONE

- Optical emission spectroscopy diagnostics implemented at the high charge states injector of GSI
- Microwave shielding of Standard Evaporation Oven for stable metal ion beam production and operation
- Achievements in Ca ions beams production

High Charge States Injector (HLI)

CAPRICE ECRIS MAIN PARAMETERS

Hexapole field	11,2 T					
Solenoid field	0,81,5 T					
µW-power	10800 W (CW mode)					
µW-frequency	14.5 (12,416) GHz					
Extraction Voltage [kV]	≤ 22					
Ion Species	Gas + Metal					
Mode	CW or Pulsed					

Fabio Maimone24th ECRIS Virtual Workshop, FRIB-MSU, 28-30 September 2020

3

High Charge States Injector (HLI)

CAPRICE ECRIS MAIN PARAMETERS

Hexapole field	11,2 T					
Solenoid field	0,81,5 T					
µW-power	10800 W (CW mode)					
µW-frequency	14.5 (12,416) GHz					
Extraction Voltage [kV]	≤ 22					
Ion Species	Gas + Metal					
Mode	CW or Pulsed					

Evaporation technique for metal ion beam production

Standard Temperature Oven (STO)

LAYOUT

- Central current entry
- · Heating helix on ceramic body
- Water cooled support tube
- Crucible or aperture ring

OPERATING PARAMETERS

- Power: 2-120W
- Temperature: 400 -1550°C
- Consumption: 0,2 5 mg/h
- Lifetimes days: ${\rm ^{48}Ca} \le 30,\,{\rm ^{64}Ni} \le 6$

⁴⁸Ca charge states distributions and plasma images

Spectrum of ⁴⁸Ca + He optimized on ⁴⁸Ca¹⁰⁺

A CCD camera looks through the straight beam line and the extraction aperture into the plasma chamber.

⁴⁸Ca charge states distributions and plasma images

Spectrum of ⁴⁸Ca + He optimized on ⁴⁸Ca¹⁰⁺

⁴⁸Ca charge states distributions and plasma images

Spectrum of ⁴⁸Ca + He optimized on ⁴⁸Ca¹⁰⁺ after an excessive oven power increase

⁴⁸Ca charge states distributions and plasma images

Spectrum of ⁴⁸Ca + He optimized on ⁴⁸Ca¹⁰⁺ during an over heating of the oven

⁴⁸Ca charge states distributions and plasma images

Spectrum of ⁴⁸Ca + He optimized on ⁴⁸Ca¹⁰⁺ after a power reduction of the oven

⁴⁸Ca charge states distributions and plasma images

Spectrum of ⁴⁸Ca + He re-optimized on ⁴⁸Ca¹⁰⁺

Plasma image recorded with the CCD camera

Hours of beam time wasted, consumption increase of expensive material and experimentalist disappointment.

Optical diagnostic devices at HLI

Telephoto Lens

Optical Beam Splitter and Glass Fiber

CCD Camera

OCEAN OPTICS QE Pro

Entrance slits: 25 µm Wavelenght Range 449-833 nm Resolution 0.95 nm

https://www.oceaninsight.com

..to the Optical Emission Spectrometer

Fabio Maimone

HLI diagnostic devices set-up

G S II

F(AIR

Oven heating: CCD Camera images and Optical Emitted Spectrum

Oven heating: CCD Camera images and Optical Emitted Spectrum

Oven heating: CCD Camera images and Optical Emitted Spectrum

Microwave shielding of the oven orifice

MICROWAVE SHIELDING

- Material: Tungsten
- Mesh 18 (1 mm) 50 µm wire
- Optical spectroscopy as a diagnostic tool for metal ion beam production with an ECRIS

F.*Maimone, J.Mäder, R.Lang, P.T.Patchakui, K.Tinschert R.Hollinger*, Rev. Sci. Instrum. 90, 123108, 2019 OES measurements for different oven powers

- Measurements carried out with the shielded empty oven inserted inside the ECRIS.
- Helium plasma generated by coupling up to 650 W microwave power.
 - Oven power settings: 8.4, 12.5, 17.4 W.
 - Up to 69% shielding due to the mesh.

Microwave shielding of the oven orifice

MICROWAVE SHIELDING

- Material: Tungsten
- Mesh 100 (149 $\mu m)$ 25.4 μm wire
- Optical spectroscopy as a diagnostic tool for metal ion beam production with an ECRIS

F.*Maimone, J.Mäder, R.Lang, P.T.Patchakui, K.Tinschert R.Hollinger*, Rev. Sci. Instrum. 90, 123108, 2019 OES measurements for different oven powers without and with mesh at the oven head

- Measurements carried out with the shielded empty oven inserted inside the ECRIS.
- Helium plasma generated by coupling up to 650 W microwave power.
 - Oven power settings: 8.4, 12.5, 17.4 W.
 - Up to 69% shielding due to the mesh.
 - Succesfull test at EIS testbench with ⁴⁰Ca

⁴⁸Ca Beam Times in 2020 (With microwave shielded oven)

⁴⁸Ca¹⁰⁺ beam (19 February – 04 March)

- Beam intensity: 90-120 μA
- Stable beam for the entire beam time and no on–call or intervention necessary

⁴⁸Ca¹⁰⁺ beam (17-31 March)

- Beam intensity: 70-90 μA
- Two on–call intervention necessary

⁴⁸Ca¹⁰⁺ beam (02-15 April)

- Beam intensity 90-100 μA
- Two on–call intervention necessary
- Beam unstable after source recovery due to software reset (12.04.20)

⁴⁸Ca¹⁰⁺ beam (19 April -15 May)

- Beam intensity 100-110 µA
- Non on-call intervention necessary

Time

OES diagnostic during the ⁴⁸Ca beam-run 02-15 April 2020

OES diagnostic during the ⁴⁸Ca beam-run 02-15 April 2020

16

- For ⁴⁸Ca operation it is difficult to find a working point to guarantee a long-term stability as the oven response time and the ECRIS reaction are relatively slow.
- The use of an optical spectrometer as a diagnostic tool for routine operation helps to recover the source performances much faster during the metallic ion beam production whenever optimizations are required or instabilities occur.
- The grid shielding of the oven head improved the Ca ion beam production in terms of stability, intensity and material consumption since the parasitic heating of the ceramic insulating material inside the oven head is strongly reduced.

THANK YOU FOR YOUR KIND ATTENTION

THE ECRIS TEAM

R. Hollinger (dpt. Leader) Klaus Tinschert Ralf Lang Jan Mäder Patrick Tedit Patchakui Aleksandr Andreev Me

SPARES SLIDES

GSI Helmholtzzentrum für Schwerionenforschung GmbH Fabio Maimone 24th ECRIS Virtual Workshop, FRIB-MSU, 28-30 September 2020

Selection of provided ion species

Gaseous Elements				Solid Elements			Solid Elements							
and Compounds					and Compounds			and Compounds						
Element	Isotope	Charge States	Main Gas	Aux Gas	Element	Isotope	Charge States	Sample Material	Aux Gas	Element	Isotope	Charge States	Sample Material	Aux Gas
Н	$^{1}H_{2}$	1	H_2	-		⁶ Li	1	LiF, *	He	Fe	⁵⁸ Fe	8, 9	Fe	He
С	¹² C	2	CO ₂	O ₂	LI	⁷ Li	1	LiF	He	Ni	⁵⁸ Ni	8, 9	Ni	He
ο	¹⁶ O	3	02	He		²⁴ Mg	5	Mg	He		⁶² Ni	9	Ni, *	He
	¹⁸ O	3	0 ₂ , *	He	Mg	²⁵ Mg	4	Mg, *	He		⁶⁴ Ni	9	Ni, *	He
Ne	²⁰ Ne	4	Ne	He		²⁶ Mg	4, 5	Mg, *	He	Zn	⁶⁴ Zn	10, 11	ZnO	O ₂
	²² Ne	4	Ne, *	He	Si	²⁸ Si	5	SiO	He		⁶⁸ Zn	10	ZnO, *	02
	³² S	5	SO ₂	O ₂		³⁰ Si	6	SiO, *	He		⁷⁰ Zn	10	ZnO, *	O ₂
S	³⁴ S	6	SO ₂ , *	O ₂	Са	⁴⁰ Ca	6, 7	Ca	He	Ag	¹⁰⁷ Ag	15	Ag	O ₂
	³⁶ S	5	SO ₂ , *	O ₂		⁴⁸ Ca	7, 10	Ca, *	He	Sn	¹¹² Sn	15, 17	Sn, *	02
Ar	³⁶ Ar	5, 6, 7	Ar, *	O ₂	т:	⁴⁸ Ti	7	Ti	He		¹¹⁴ Sn	16, 17	Sn, *	02
	⁴⁰ Ar	6, 7, 8	Ar	O ₂	11	⁵⁰ Ti	7, 8	Ti, *	He		¹¹⁸ Sn	16	Sn, *	02
Kr	⁸⁴ Kr	12	Kr	He	v	⁵¹ V	8	v	He		¹²² Sn	17	Sn, *	02
	⁸⁶ Kr	12	Kr, *	He		⁵⁰ Cr	8	Cr, *	He		¹²⁴ Sn	16	Sn, *	O ₂
Хе	¹²⁴ Xe	15, 16	Xe, *	O ₂	Cr	⁵² Cr	7	Cr	He	Au	¹⁹⁷ Au	24	Au	02
	¹²⁹ Xe	18	Xe, *	O ₂		⁵⁴ Cr	8	Cr, *	He	Pb	²⁰⁸ Pb	27	Pb, *	02
	¹³⁶ Xe	18,19	Xe.*	02		•								

* enriched elements * enriched compounds

→ Evaporable solids (metals) – vapor pressure of ≈10⁻² mbar at T < 1600°C for Standard-Oven (STO), and at T < 2000°C for High-Temperature-Oven (HTO)</p>

GSI Helmholtzzentrum für Schwerionenforschung GmbH

Fabio Maimone24th ECRIS Virtual Workshop, FRIB-MSU, 28-30 September 2020

GSI Oven Types: STO and HTO

Oven models used at GSI – length 70 mm, diameter 14.5 mm

Standard Temperature Oven (STO): yellow = Al₂O₃; green = Ta; orange = Mo; violet = CuBe₂; black = WRe(26%)

High Temperature Oven (HTO): yellow = Al₂O₃; green = Ta; orange = Mo; violet = WL20

Hot screen for Ca, Mg (, Sr)

- Made of Tantalum
- Screen thickness: 0,1 mm
- Length= 165 mm
- Diameter= 62 mm
- Plasma chamber diameter= 64 mm
- Gap to cold plasma chamber: 1 mm
- Ca consumption without hot screen:
 ~ 10 mg/h
- Ca consumption with hot screen:
 ~ 0,2–0,5 mg/h
- Crucible filling: ~ 300 mg
- Material costs: ~ 50.000 €
- Screen used only once
- Caps are cleaned and reused

