Author: Shaposhnikov, R.A.
Paper Title Page
MOZZO02 ECR Discharge in a Single Solenoid Magnetic Field as a Source of the Wide-Aperture Dense Plasma Fluxes 47
 
  • I. Izotov, A. Bokhanov, S. Golubev, M.Yu. Kazakov, S. Razin, R.A. Shaposhnikov, S.P. Shlepnev, V. Skalyga
    IAP/RAS, Nizhny Novgorod, Russia
 
  Funding: The reported study was supported by RFBR, project #19-32-90079, and by Presidential Grants Foundation (Grant #MD-2745.2019.2)
Sources of dense plasma fluxes with wide aperture are extensively used in applied science, i.e. surface treatment, and as a part of neutral beam injectors. ECR discharge in a solenoidal magnetic field (i.e. with no magnetic mirrors for plasma confinement), sustained by a powerful radiation of modern gyrotrons is under consideration at IAP RAS as a possible alternative to widely used vacuum arc, RF and helicon discharges. The use of a high frequency radiation (37.5 GHz) allows to obtain a discharge at lower pressure, sustain almost fully ionized plasma with density more than 1013 cm-3, whereas the power on the level of several hundreds of kW allows one to create such a plasma in considerably large volume. In the present work fluxes of hydrogen plasma with the equivalent current density of 750 mA/cm2 and the total current of 5 A were obtained. A multi-aperture multi-electrode extraction system design capable of forming the non-divergent ion beam was developed with the use of IBSimu code.
 
slides icon Slides MOZZO02 [0.681 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ECRIS2020-MOZZO02  
About • Received ※ 27 September 2020 — Revised ※ 30 January 2021 — Accepted ※ 13 May 2021 — Issue date ※ 18 May 2021
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)