Author: Kalvas, T.
Paper Title Page
MOXZO02 Conceptual Design of Heavy Ion ToF-ERDA Facility Based on Permanent Magnet ECRIS and Variable Frequency RFQ Accelerator 21
 
  • O.A. Tarvainen, D.C. Faircloth, A.P. Letchford
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
  • J. Julin, T. Kalvas
    JYFL, Jyväskylä, Finland
 
  Ion beam analysis is typically based on tandem accelerators and negative ions. The required 5-20 MeV energies for heavy ion time-of-flight elastic recoil detection analysis* (ToF-ERDA) can be achieved with a high charge state ion source and RFQ accelerator. We present a conceptual design of a ToF-ERDA facility based on a permanent magnet ECRIS and variable frequency RFQ accelerating 1-10 pnA of 40Ar8+, 84Kr17+ and 129Xe24+ ions to 4-7, 10-15 and 13-20 MeV. We present the PM ECRIS requirements focusing on the CUBE-ECRIS** with a quadrupole min-B field topology. Beam dynamics studies demonstrating good transmission of the heavy ion beams from the ion source to the RFQ entrance through the electrostatic low energy beam transport (LEBT) and a permanent magnet dipole are presented. The predicted LEBT transmissions of the CUBE-ECRIS (rectangular extraction slit) and a conventional ECRIS (circular extraction aperture) are compared. The conceptual design of the RFQ is described and the implications of the energy spread on the high energy beam transport are discussed. It is demonstrated that an energy spread below 0.2 % is necessary for appropriate resolution of the heavy ion ToF-ERDA.
* J. Julin and T. Sajavaara, Nucl. Instrum. Methods Phys. Res. B 406, Part A, (2017), pp 61-65.
** T. Kalvas, O. Tarvainen, V. Toivanen and H. Koivisto, 2020 JINST 15 P06016.
 
slides icon Slides MOXZO02 [10.204 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ECRIS2020-MOXZO02  
About • Received ※ 25 September 2020 — Revised ※ 28 September 2020 — Accepted ※ 14 December 2020 — Issue date ※ 18 May 2021
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUZZO02 Electron Cyclotron Resonance Ion Source Related Research and Development Work at the Department of Physics, University of Jyväskylä (JYFL) 98
 
  • H.A. Koivisto, B.S. Bhaskar, A. Ikonen, T. Kalvas, S.T. Kosonen, R.J. Kronholm, M.S.P. Marttinen, O.P.I. Timonen, V. Toivanen
    JYFL, Jyväskylä, Finland
  • J. Angot, B.S. Bhaskar, T. Thuillier
    LPSC, Grenoble Cedex, France
  • I. Izotov, V. Skalyga
    IAP/RAS, Nizhny Novgorod, Russia
  • L. Maunoury
    GANIL, Caen, France
  • O.A. Tarvainen
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
 
  Funding: The work has received funding from the Academy of Finland under the Academy of Finland Project funding (No. 315855) and from University Grenoble Alps under EMERGENCE-project.
Recent research work of the JYFL ion source team covers multi-diagnostic studies of plasma instabilities, high-resolution plasma optical emission spectroscopy, ion current transient measurements to define the total life-time of a particle in the highly charged plasma. The JYFL team also elaborates the magnetic and technical design of the unconventional ion source named CUBE. The R&D work includes, in addition, the commissioning and operation of the high-performance 18 GHz ECRIS, HIISI. The instability measurements have revealed new information about the parameters affecting the onset of the plasma instabilities and shown that different instability modes exist. The ion-beam transient studies have given information about the cumulative life-time of highly-charged ions convergent with the ion temperatures deduced from the Doppler broadening of emission lines. The CUBE prototype has a minimum-B quadrupole magnetic field topology, similar to ARC-ECRIS, and its all-permanent magnet structure has been optimized for 10 GHz frequency. The CUBE design will be presented along with its commissioning status. The status and operational experience with HIISI will be reported as well.
 
slides icon Slides TUZZO02 [9.553 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ECRIS2020-TUZZO02  
About • Received ※ 28 September 2020 — Revised ※ 09 November 2020 — Accepted ※ 03 December 2020 — Issue date ※ 05 May 2021
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUZZO03
Study on the Correlation between Energy Distribution of Electrons Lost from the Confinement and Plasma Bremsstrahlung on a min-B ECR Plasmas  
 
  • B.S. Bhaskar, T. Thuillier
    LPSC, Grenoble Cedex, France
  • B.S. Bhaskar, T. Kalvas, H.A. Koivisto, R.J. Kronholm, M.S.P. Marttinen, O.A. Tarvainen, V. Toivanen
    JYFL, Jyväskylä, Finland
  • I. Izotov, V. Skalyga
    IAP/RAS, Nizhny Novgorod, Russia
  • O.A. Tarvainen
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
 
  Funding: The work has received funding from the Academy of Finland under the Academy of Finland Project funding (No. 315855) and from University Grenoble Alps under EMERGENCE-project.
The study of plasma bremsstrahlung has been used as a diagnostic tool for understanding the behavior of confined plasma in Electron Cyclotron Resonance Ion Sources (ECRIS). In order to understand the relation connecting the confined plasma and the electrons escaping the confinement, a series of measurements have been made to measure the bremsstrahlung produced in the axial and radial direction along with the Lost Electron Energy Distribution (LEED) axially on JYFL 14 GHz ECR. We present here the effect of various source parameters on the axial and radial bremsstrahlung along with the LEED on a min-B confined ECR plasma. The measured LEED has been found to show a correlation with bremsstrahlung measurement and also have observed as a potential diagnostic method for instability. The explanation for observed LEED and bremsstrahlung trends is provided.
 
slides icon Slides TUZZO03 [1.520 MB]  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)