JACoW logo

Journals of Accelerator Conferences Website (JACoW)

JACoW is a publisher in Geneva, Switzerland that publishes the proceedings of accelerator conferences held around the world by an international collaboration of editors.


BiBTeX citation export for WEWZO03: High Intensity Vanadium Beam Production to Search for New Super-Heavy Element with Z = 119

@inproceedings{nagatomo:ecris2020-wewzo03,
  author       = {T. Nagatomo and Y. Higurashi and O. Kamigaito and T. Nakagawa and J. Ohnishi},
  title        = {{High Intensity Vanadium Beam Production to Search for New Super-Heavy Element with Z = 119}},
  booktitle    = {Proc. ECRIS'20},
% booktitle    = {Proc. 24th International Workshop on ECR Ion Sources (ECRIS'20)},
  pages        = {118--121},
  eid          = {WEWZO03},
  language     = {english},
  keywords     = {ECR, ion-source, experiment, plasma, ECRIS},
  venue        = {East Lansing, MI, USA},
  series       = {International Workshop on ECR Ion Sources},
  number       = {24},
  publisher    = {JACoW Publishing, Geneva, Switzerland},
  month        = {07},
  year         = {2022},
  issn         = {2222-5692},
  isbn         = {978-3-95450-226-4},
  doi          = {10.18429/JACoW-ECRIS2020-WEWZO03},
  url          = {https://jacow.org/ecris2020/papers/wewzo03.pdf},
  abstract     = {{We have begun searching for the new super-heavy element (SHE) with Z=119 at RIKEN Heavy Ion LINAC (RILAC). To overcome the small production cross section of vanadium (V) beam on the curium target, the project requires a very powerful V beam. In order to optimize the beam intensity of V with the charge state of 13+, we have investigated the effects of the amount of V vapor, the power of 18- and 28-GHz microwaves, and the strength of the mirror field. While no significant effect was seen by changing the mirror field Bext from 1.4 T to 1.6 T, the amount of V vapor and the microwave power strongly affected. Based on the correlation between the V-vapor and the microwave power, we obtained a 600-euA V(13+) beam with the V consumption rate of 24 mg/h and the microwave power of 2.9 kW in order to execute about 1-month SHE experiment. Furthermore, because such strong mirror field enhances the transverse beam emittance, it is important to control the emittance with small reduction of the intensity. We have successfully controlled the beam emittance by using three pairs of slits (triplet slits) in LEBT by eliminating the peripheral beam components in both of the x-x’ and y-y’ phase spaces.}},
}