

Development of 2.45 GHz ECR ion source test bench

SUDHIRSINH VALA INSTITTUTE FOR PLASMA RESEARCH (IPR) GANDHINAGAR-INDIA

Outline of Presentation

- Introduction
- Status of facility
- Development of ECR ion source test bench
- Results
- Summary & Future plan

Ongoing project at IPR

 Accelerator based 14-MeV Neutron generator (~10¹² n/s)

$D + T \rightarrow {}_{2}^{4}He + n + 17.6 MeV$

1. 5-MeV, 5 mA RFQ Accelerator for ion beam irradiation.

D-T Neutron generator

Main Parameters

- Beam Energy 300 keV
- Beam Current –
 0.3 mA
- Target: 10 Ci Ti-T
- Yield: ~ 10¹⁰ n/s

9/13/2018

ECRIS 2018, Catania , Italy

A LOW POWER LOW COST 2.45 GHZ ECRIS FOR THE PRODUCTION OF MULTIPLY CHARGED IONS

M. Schlapp¹, R. Trassl², M. Liehr³ and E. Salzborn² ¹ Argonne National Laboratory, Argonne, IL 60439 ² Institut fuer Kernphysik, Strahlenzentrum, JLU Giessen, Germany ³ Leybold-Heraeus, Hanau, Germany

ECRIS 2018, Catania, Italy

Accelerator based 14-MeV neutron generator

Design Parameter for Accelerator based	
Neutron Generator	
Type of Machine	DC Electrostatic
	Accelerator
Max Acceleration	300 kV (max)
Voltage	
Type of Ion Source	ECR ion source
D ⁺ Ion Current	20 mA
Tritium Target	140 Ci
Target Type	Rotating & Water
	Cooled
Estimated Neutron	1-5 x 10 ¹² n/s
Yield	

End use of the facility

- Benchmark experiments in the field of fusion neutronics
- Validation of neutron transport and activation codes.
- Tritium production measurement
- For diagnostics testing and calibration
- Activation studies
- Cross-section measurement
- Deuterium ion beam irradiation
- Neutron radiography

3-D View of Neutron Generator

2.45 GHz ECR ion source bench

Allison Emittance Scanner

9/13/2018

Beam Transport system for 14-MeV NG

Proposed beam line system

Beam envelope for 20 mA current throughout BTS using Trace Win

ECRIS 2018, Catania, Italy

Rotating tritium target holder

Rotating Tritium Target	
Rotation Speed	100 to 1000 rpm
Flow Rate	20 lpm
Inlet Temp	15-18 °C
Heat Load	9 kW

Tritium handling & Recovery System

Shielding design of Neutronics Laboratory

MCNP model

Zone-1: Normally Accessible Area (Supervised Area) Dose < 1μ S/hr : Zone-2: Restricted Area (Controlled Area) Dose < 10 μ S/hr :. **Zone-3 Prohibited Area** Dose Rate: > 10 μ S/hr: ECRIS 2018, Catania, Italy

9/13/2018

Side View

5-MeV, 5 mA RFQ accelerator for lon beam irradiations

Schematic diagram of 2.45 GHz ECR ion Source

Typical layout of 2.45 GHz ECR ion source

IPR ECR ion source Test bench

IPR ECR Ion source test bench

ECRIS 2018, Catania, Italy

3-Step ridged wave guide

freq(2)=2.45 GHz Multislice: Electric field norm (V/m)

z

Optimized E-field

3-step ridge wave guide

▲ 1.02×10⁵ ×10⁵

Plasma Chamber

Water cooled plasma chamber

ECRIS 2018, Catania, Italy

Magnet System

Aluminium Frame

Ion Extraction System

Photo of Electrodes

Tri-electrode extraction system

Ion beam trajectory

9/13/2018

ECRIS 2018, Catania, Italy

Ion Extraction Assembly

Einzel lens

Control system of remote operation of ECR ion source

Plasma Characterization

deuterium plasma

Helium plasma.

Nitrogen plasma.

Result of ion beam extraction

Design of LEBT

Beam envelop of x-axis and y-axis for 7 mA ion beam current through LEBT

Summary

- The ECR ion source test bench has been set up and the ECR plasma has been generated using microwave power 100–400 W.
- The plasma parameters are measured in the ion source using optical spectroscopy method
- The extraction system and focusing system have been mounted on ECR ion source test bench and it has been tuned for the beam extraction as function of extraction voltage, microwave power and gas flow rate.

Future Plan

- For the better focusing of the ion beam in to the LEBT, Einzel lens will be replaced with the magnetic lens (Solenoid).
- Typical length of the solenoid is 255 mm with 0.35 T uniform magnetic field.
- It is under fabrication and it will be installed soon.
- To measure the beam emittance at RFQ entrance, Pantechnik make dual Allison emittance scanner will be integrated in to the test bench.

