Gasdynamic ECR Tandem Ion Source for Negative Hydrogen Ion Production

R. L. Lapin1, S. V. Golubev1, I. V. Izotov1, S. V. Razin1, R. A. Shaposhnikov1, V. A. Skalyga1, O. Tarvainen2

1Institute of Applied Physics of Russian Academy of Sciences, Nizhny Novgorod, Russia
2University of Jyväskylä, Department of Physics, Jyväskylä, Finland
SMIS-37 gasdynamic high-current ion source

- Frequency 37.5 GHz
- Power up to 100 kW
- Pulse duration 1 ms
- Trap magnetic field up to 5 T
- Unique plasma parameters
 \(N_e > 10^{13} \, \text{cm}^{-3}, \tau \approx 5 \div 50 \, \mu\text{s}, \, T_e \approx 50 \div 300 \, \text{eV} \)
- High current density \((j \approx 100 \div 800 \, \text{mA/cm}^2) \)
- Low emittance values

SMIS-37 gasdynamic high-current ion source
SMIS-37 gasdynamic high-current ion source

\[H_2 + e^- (< 100 \text{ eV}) \rightarrow H_2^* + e^- \]

\[H_2^* + e^- (\sim 1 \text{ eV}) \rightarrow H + H^- \]
Extraction system

<table>
<thead>
<tr>
<th>Plasma electrode, mm</th>
<th>Puller, mm</th>
<th>Δr, mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>11</td>
</tr>
</tbody>
</table>
Previous experiments

- The dependences of the current of negative hydrogen ions H^- were measured at constant gas injection into the first chamber on various parameters.
- Despite the obvious non-optimality of the experimental conditions in the experiment it was possible to achieve values of the current amplitude of the anions up to 2 mA (and negative ion current density to several mA/cm2).
- We made up optimization of gas injection scheme.
Focus of recent experiments

- Experiment with only pulsed gas injection into second chamber
- Plasma chamber heating in order to remove water
- Residual gas analysis
- The use of various extraction systems
Optimal parameters search
Optimal parameters search

![Graph showing charge vs. temporal delay between gas inlet and the leading edge of microwave impulse, ms, with curves for O_2^- and H^- labeled.](image)
Optimal parameters search

The temporal delay between the gas pulse and the leading edge of the microwave pulse, mc
Gas set after cleaning the chambers
Intermediate results

- After all the improvements were made, it was found with the help of the analyzer that the H^-/O_2^- ratio is 2/3 for plasma electrode aperture of 5 mm.

- Electron current to negative ion current ratio was about 80.
Plasma electrode aperture = 1 mm

Sample negative ions \(\approx 80 \) mA/cm\(^2\) !!!
Checking the optimum
Plasma electrode aperture = 3 mm
Results
Conclusions

✓ We measured dependencies of the negative ion current on various parameters with different extraction systems

✓ We achieved the negative ion current density on the level of 80 mA/cm² through 1 mm plasma electrode
Thank you for attention!

Q & A