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Motivation — Metal ion production

o Metal ion beams widely used (e.g. over half of GANIL beams),
continued development important

o With conventional methods (ovens, sputtering, MIVOC) the global
ionization efficiencies are low

& A N%



Motivation — Metal ion production
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- Most of the injected material is wasted
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Motivation — Metal ion production

o Metal ion beams widely used (e.g. over half of GANIL beams),
continued development important

o With conventional methods (ovens, sputtering, MIVOC) the global
ionization efficiencies are low
o 1+/n+ method: efficiencies >50% have been demonstrated
— Decreased material consumption and chamber contamination
— Decoupling of metal ion production and multi-ionization process

o Challenges:
— High intensity operation needs to be demonstrated
— Very high efficiency production of the initial 1+ beams

Experimental work required to validate the potential of
1+/n+ method for metal ion production
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Motivation — Support for SPIRAL1
Charge Breeder

o Recently commissioned at GANIL
RIB facility SPIRAL1

o Operational machine in high
radiation dose area

o Limited access, restricts the future
charge breeder R&D at GANIL

Offline test stand desirable, ‘
results transferred to SPIRAL1 CB &
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GTS 14.5 GHz ECRIS
a future 1+/n+ R&D platform

o 2017: extraction upgrade, new
center coil
o Up to 3x more beam %
o 2018: new injection system
o Double frequency operation
o E.g.8x more Xe30*

o Next: operation + CB R&D

o Quick transition between
conventional ECRIS and 1+/n+
operation modes required

Dedicated injection systems for Modifications
conventional and for 1+/n+ operation required
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New injection system for 1+/n+ operation

Injection module (with 1+ source) GTS ECRIS
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New injection system for 1+/n+ operation

Injection module (with 1+ source) GTS ECRIS
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Injection module design




Injection module design

1+ beam production
and main ion optics

1. 1+ ion source

o First: thermionic
alkali ion source

o Later other sources to
expand capabilities

2. Puller electrode
3. Einzel lens




Vacuum
separation

Injection module design




Injection module design

Beam manipulation
and diagnostics

Horizontal steerer
Vertical steerer
2-sided Faraday cup
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Beam dump for
pulsed operation




Injection module design




Injection module design

Microwave and gas
injection, B field
modification

WR62 wave guide
WRD750 wave guide
Gas injection pipe
ARMCO cylinder

Injection aperture
electrode (ARMCO,
can be biased)
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Injection module design

1+ beam deceleration
and injection into the
plasma chamber

. Grounded tube
2. ARMCO cylinder
(Vers)

3. ARMCO injection
aperture electrode

(VarstViae)




Magnetic field

B field design and calculations performed with Radia software
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lon optical simulations

IB

o Simulation tools:

o IBSimu ion optical code, 3D geometry -
o 3D magnetic field maps from Radia

o Simplified model for GTS plasma: fixed plasma potential,
no particle interactions

o Beam: 10 pA of 3°K* with g,,, = 20 mm mrad

o Main goal: verify transmission through the injection module

o Secondary: injection efficiency into the plasma chamber (only
suggestive results possible due to simplified plasma model)
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lon optical simulations
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lon optical simulations

Transmission: GND GND
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lon optical simulations

Transmission: GND GND
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lon optical simulations

Transmission:

GND GND
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lon optical simulations

o Potential issue: ions extracted from plasma towards injection
o Simulation: 0.9 mA of extracted oxygen ions (1+ ... 8+)
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Summary and conclusions

o The design to transform GTS into a charge
breeder is ready

o The included features should provide good
capabilities for charge breeder R&D

o The simulation results look promising — no
showstoppers expected

o Parts procurement on-going, installation and
commissioning expected in 2019
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Magnetic field
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