

SPIRAL1: a versatile user facility

L. MAUNOURY - GANIL - Caen on behalf of Upgrade SPIRAL1 team

1) MOTIVATIONS 2) 1+/N+ AT GANIL

3) COMMISSIONING

4) ONGOING R&D

5) CONCLUSION

Since 2001 SPIRAL1 under operation Mainly RIB's from gaseous elements 7 elements: He, C, O, F, Ne, Ar, Kr 35 beams provided / $T_{1/2}$ > 100ms

FEBIAD (or NANOGAN) + Charge breeder

Physicists need more exotic beams to study the nuclei properties SP1 should extend its RIB's palette 1+/ n+ method Dedicated TISS (FEBIAD + C target) Charge breeder CIME as post-accelerator New target m < Nb but C primary beam

1+/n+ at GANIL: recipe

TIS NANOGAN

Connect to current GANIL beam lines

1+/n+ at GANIL: recipe

1+/n+ at GANIL: Multipurpose facility

Beam user possibilities

Low Energy Beams : DESIR

The low energy platform for studying property of nuclei

RADIOACTIVE ION BEAMS

Accelerated Beams : GANIL experimental areas AGATA, Vamos, LISE,...

> STABLE OR RADIOACTIVE ION BEAMS

SPIRAL1

1+/n+ at GANIL: Multimode facility

Shooting through mode 1+

Shooting through mode N+

1+/N+ mode

Charge breeder as injector

Commissioning: SP1 CB

Features

- ✓ Two RF ports 14.5 GHz and 8-18 GHz
- ✓ New design of gas and RF injection
- Symmetrisation of the iron plug
- Movable deceleration tube
- Plasma chamber made of Al

Last modifications

- ✓ Soft iron add-ons on injection
- ✓ Soft iron rings location optimization
- ✓ Plasma electrode location

Commissioning: RUN1

÷	lon beam	LPSC 2015	GANIL			
			Commissioning	Radioactive lon	Efficiency	
	⁴⁰ Ar ¹¹⁺	12.9%	12.1%		5.3% without optimisation	
	²³ Na ⁷⁺	6%	3.2%	37 K ⁹⁺ I _{1/2} = 1.24s		
	²³ Na ⁸⁺	5.3%	3.6%			
	³⁹ K ⁹⁺	13%	14.5%			

Stable ion beam	Request	SP1 Charge Breeder	
E725	³⁶ Ar@3.2MeV/A	³⁶ Ar ⁷⁺ @15kV	
EM97	⁸⁴ Kr@2MeV/A ⁸⁴ Kr@5MeV/A ⁸⁴ Kr@7MeV/A	⁸⁴ Kr ¹¹⁺ @14,3kV ⁸⁴ Kr ¹⁷⁺ @21.5kV ⁸⁴ Kr ²⁰⁺ @28.8kV	
EM97	¹²⁹ Xe@2,5MeV/A ¹²⁹ Xe@5MeV/A ¹²⁹ Xe@7MeV/A	¹²⁹ Xe ²²⁺ @13.3kV ¹²⁹ Xe ²²⁺ @26.6kV ¹²⁹ Xe ²⁷⁺ @32.7kV	

Commissioning: global efficiency

-,N+	
Q	N+ Post-accelerated

Steps	1+/N+ mode		N+ Shooting through	
	Goals	Done	Goal	Done
E transp ⇔ CF13	80%	>80%	50%	40%-70%
E transf 1+⇔N+	7%	5-15%	/	/
E transp ⇔ CF31	50%	>80%	65%	60%-75%
E transp ⇔ CF81	80%	70-95%	80%	>75%
E Accel.	20%	15-30%	20%	35-42%
Total	0.45%	0.54%	5.2%	7%
	(EM ³⁹ K ⁹⁺)		(E744 ¹⁴ O ⁴⁺)	

Commissioning: summary

Modifications of the facility regarding the safety – security requirements

Modification of the LEBT
Modification of the ancillaries to host the SP1 charge breeder

TIS FEBIAD connected to the SP1 carbon target
 Provide metallic beam I>2^E+6pps

- Operating time ~ 1mois

- Optimization of the SP1 charge breeder => minimum CB efficiency of 7%

- Settings of the new beam optics

Commissioning: summary

- Modification of the LEBT - Modification of the ancillaries to host the SP1 charge breeder

Operation time starts

TIS FEBIAD connected to the SP1 carbon target
 Provide metallic beam I>2^E+6pps

- Operating time ~ 1mois

- Optimization of the SP1 charge breeder => minimum CB efficiency of 7%

- Settings of the new beam optics

ONGOING R&D

Target Ion Source FEBIAD

- ✓ Heat shielding ⇒ insulator protection against heat
- ✓ Chicane ⇒ insulator protection against C vapor
- ✓ Coolling FEBIAD chamber ⇒ to suppress

unwanted anode current

GOAL => ONE MONTH OPERATION

P. Delahaye invited speaker at EMIS CERN 2018

SP1 Charge Breeder

- ✓ Plasma density ⇒ talk of Arun Annaluru
- Charge breeding time measurements
- ✓ Magnetic tip ⇒ increase CB efficiencies light elements LPSC
- ✓ Double frequency ⇒ enhance beam stability + increase HCI

GTS modification

✓ Towards a 1+/N+ system ⇒ talk of Ville Toivanen

Commissioning is over – Operation period begins

✓ Almost all the goals are Additional work on FEBIAD longevity is required Increase CB efficiency of light elements is needed

A Multimode – Multipurpose facility is available for physicists

Thank you for your attention

.

