CHARGE BREEDING TIME STUDIES WITH SHORT PULSE BEAM INJECTION

J. Angot¹, O. Tarvainen², T. Thuillier¹, M. Baylac¹, T. Lamy¹,

N. Préveraud¹, P. Sole¹, and J. Jacob¹

¹Université Grenoble-Alpes, CNRS-IN2P3, Grenoble Institute of Engineering (INP), LPSC, 38000 Grenoble, France ²University of Jyvaskÿlä, Departement of Physics, 40500 Jyväskylä, Finland

ECRIS Workshop, Catania, September 9th-14th 2018

- Introduction to ECR Charge Breeding
 - Motivations for short pulse beam injection
 - Experimental setup and results
 - Implication on the RIB CB efficiency
 - Conclusion

Introduction

- ➢ ECR CB are used in ISOL facilities (SPIRAL1, TRIUMF, SPES..) to increase the charge state of a RIB from 1+ → N+
 - Radioactive production yield 10² 10¹¹ particles per second
- > It is a link in the ISOL chain, characterized by
 - The efficiency $~~\eta$
- *extracted particle current injected particle current*
- The beam purity, % of chemical contaminants included into the N+ beam

Introduction

- Traditional method of CB Time measurement
 - generate a rise front with 1+ beam
 - N+ : measure the necessary time to reach 90% of the final value UNIVERSITY OF JYVÄSKYLÄ

International Workshop on ECR Ion Sources, Catania, September 9th-14th 2018, Italy

Laboratoire de Physique Subatomique et de Cosmologie CB Time studies with short pulse beam injection

Motivations for short pulses injection

> Ambiguous measurement

At t=0.4s, Rb^{20+} signal still increasing When were these extracted ions injected ? At t=0 or later ?

> Help in understanding large discrepancies in the CB time measured values

		SPIRAL1		CARIBU		LPSC		R. Vondrasek	
lon	A/q	Efficiency (%)	τ _{CB} (ms/q)	Efficiency (%)	τ _{CB} (ms/q)	Efficiency (%)	τ _{cB} (ms/q)	RSI 77,03B107	
³⁹ K ¹⁰⁺	3.9			17.9	15.7	11.7	8.2	RSI 83,113303	
³⁹ K ⁹⁺	4.33	13.0	13.0 He	15.6	16.7		****	L. Maunoury talk	
³⁹ K ⁹⁺	4.33	11.7	3.9 . H ₂				· · · · ·	ECRIS2016	
¹³² Xe ²⁶⁺	5.07		****	13.5	^{46.1} ≠ fr	^{13.3}	5.9		
¹³² Xe ²⁶⁺	5.1			10	.8.8.	~~			

The support gas, frequency, microwave power... can have a strong influence on τ_{CB}

Laboratoire de Physique Subatomique et de Cosmologie

UNIVERSITY OF JYVÄSKYLÄ

CB Time studies with short pulse beam injection

Motivations for short pulses injection

Accumulation effect, beam injection can :

Modify the CB plasma (O_2)

Trigger instabilities in a time scale comparable to the CB time

Injection at t=0, 915 n Buffer gas O_2

➔ Measure the CB time injecting short pulses

Laboratoire de Physique

UNIVERSITY OF JYVÄSKYLÄ

Subatomique et de Cosmologie

Experimental setup

Experiments carried out on the LPSC 1+N+ beam line

Ion gun

To ensure a precise pulse duration : Use of a signal generator instead of the DAQ board

Laboratoire de Physique Subatomique et de Cosmologie

Experimental setup

Configuration of the PHOENIX ECR charge breeder

Injection

Large diameter injection electrode

HF blocker electrode

14.5 GHz 500W operation

Extraction

2 movable soft iron rings set at extraction

Axial field profile

Br = 0.8T at plasma chamber wall

International Workshop on ECR Ion Sources, Catania, September 9th-14th 2018, Italy

- Rb1+ beam injected in a He CB plasma
- Decrease of the pulse duration until the temporal response becomes constant

- Efficiency in pulse mode = Efficiency with traditional method
- The time to extract 90% of the N+ ions < traditional CB time by ~10%
- No noticeable accumulation effect in this configuration

Laboratoire de Physique Subatomique et de Cosmologie

UNIVERSITY OF JYVÄSKYLÄ

> N+ response of several charge states was recorded

Illustrates the step by step ionisation

•

OD model developed based on previous work Rb⁸⁺ Rb¹³⁺ Rb¹⁷⁺ Rb¹⁹⁺ Rb¹⁹⁺ N. Preveraud

- Similar experiments injecting pulses of neutrals were done (RIKEN, ANL, Frankfurt..)
 - Study the plasma behavior and estimate the plasma parameters with a 0 dimension model

International Workshop on ECR Ion Sources, Catania, September 9th-14th 2018, Italy

- > Method used to study plasma behavior : Bmin variation
 - Linear variation 0.432 T → 0.444 T gives linear increase of Rb¹⁹⁺ efficiency 4.4 % → 6 %

- Efficiencies in pulse mode and with traditional method are the same
- Increase of $<\tau_{\rm CB}> \Rightarrow$ better confinement of high charge state ions
- Short pulse injection is a tool to understand the plasma behavior

Laboratoire de Physique Subatomique et de Cosmologie

UNIVERSITY OF JYVÄSKYLÄ

- > Other studies of accumulation effect, with Rb¹⁹⁺
 - Duplication + time shift + sum of the 1.25ms N+ response
 - Reconstructed curves compared to long pulse N+ responses

N+ responses well reproduced \rightarrow small cumulative effect

Interaction between the injected beam and the high charge state plasma ions

Grenebie Grenebie Laboratoire de Physique Subatomique et de Cosmologie

10 ms pulse, 0.4 Hz

160 ms pulse, 0.4 Hz

Reasons ?

- Coulomb collisions between injected ions and plasma ions
- Modification of the potential dip \rightarrow de-confinement of high charge state ions
- Combination of the two

Implication on the RIB CB efficiency

- > Population decay on the form $N(t) = N_0 e^{\frac{-t}{\tau_1}}$ $T_{1/2} = \tau_1 * \ln(2)$
- > + N+ response → calculation of the effic. as a function of $T_{1/2}$

Exemple for Rb¹⁹⁺

Isotope	⁸⁵ Rb	⁹³ Rb	⁹⁴ Rb	⁹⁵ Rb	⁹⁶ Rb	⁹⁷ Rb	⁹⁸ Rb	⁹⁹ Rb
T _{1/2} (ms)	Stable	5840	2702	377.5	202.8	169.9	114	50.3
Rb ¹⁹⁺ Efficiency (%)	5.07	5.02	4.95	4.30	3.77	3.57	3.05	1.77
Rb ¹⁹⁺ RIB efficiency / Rb ¹⁹⁺ Efficiency (%)	100	98.9	97.7	84.9	74.3	70.3	60.1	35

When decreasing $T_{1/2}$:

- down to 380ms : efficiency reduction limited to 15%
- Below : efficiency reduction decreases rapidly

Implication on the RIB CB efficiency

Calculation for other charge states (4+, 8+, 11+, 13+, 17+) :

For short-lived isotopes such as ⁹⁹Rb, the CSD is shifted toward lower charge states

Conclusion

- The temporal distribution of the N+ beam extracted from the CB was measured in short pulse mode
- Efficiency in short pulse mode is comparable to the efficiency measured with the traditional method
- N+ responses provide information on the plasma behavior
 allows comparing several CB tunings and configurations
- Prompt interaction between the injected beam and the plasma ions noticed during the injection
- Allows estimating the efficiency for RIBs, as a function of the charge state and half-life

THANK YOU FOR YOUR ATTENTION

Laboratoire de Physique Subatomique et de Cosmologie

