

Laboratoire de Physique Subatomique et de Cosmologie

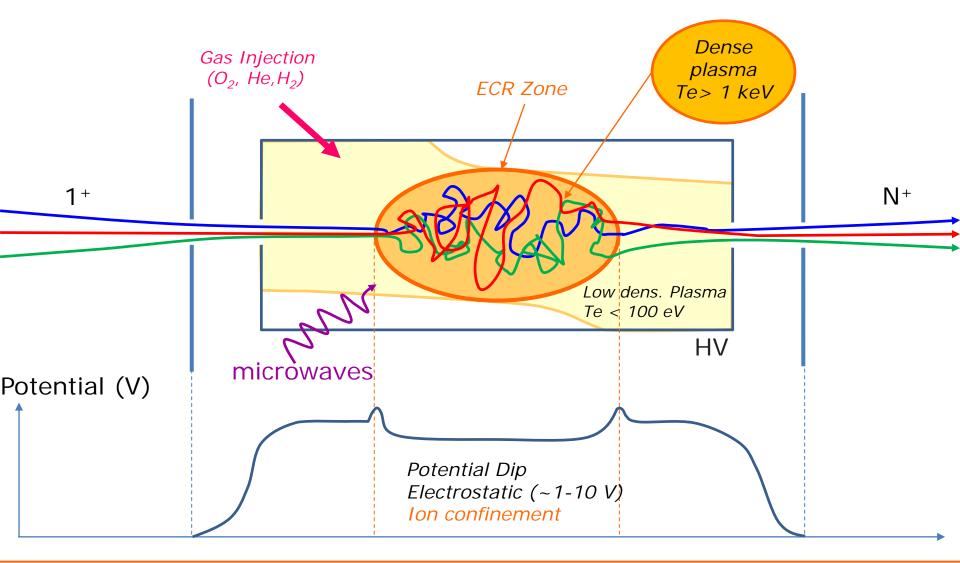
STATUS AND PROSPECTS OF ELECTRON CYCLOTRON RESONANCE CHARGE BREEDER

T. Thuillier , J. Angot, P. Sole, J. Jacob, A. Leduc, T. Lamy, B. Bhaskar, L. Bonny, LPSC

Outline

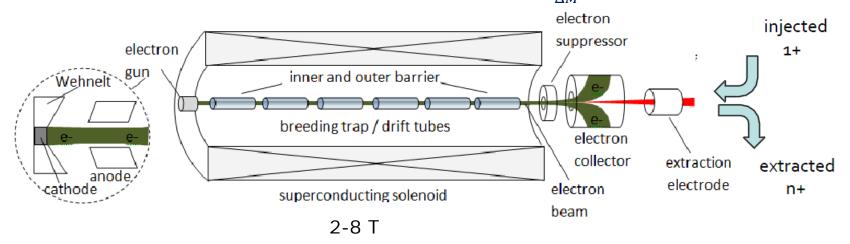
- Motivation
- Status of ECR CB operation
- Can ECR booster be improved?
- prospects for EURISOL RIB facility

MOTIVATION



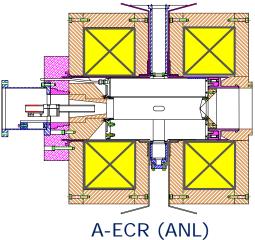
- Argonne stopped its ECR charge breeder and switched to an EBIS one
- TRIUMF is building an EBIS charge breeder to improve the RIB purity for experiments
 - Many RIB physicists have consequently concluded ECR boosters research is« dead » (« RIP » ECR CB!)
- ➤ Are ECR CB Really DEAD?
- Can they be upgraded?
- ➢ Is there a future to ECR charge breeders?
- > Testing ideas with you

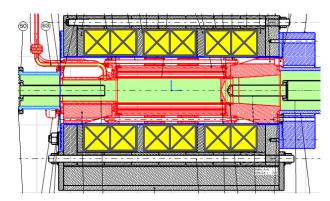
ECRIS CB Ion Capture


> Coulomb collision \rightarrow thermalisation \rightarrow diffusion \rightarrow ionization \rightarrow capture

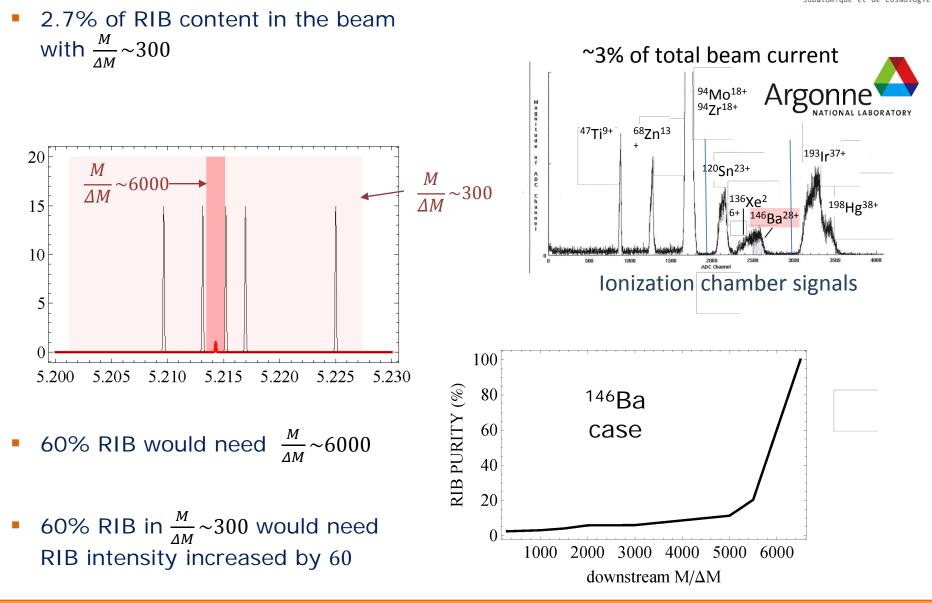
EBIS Technology

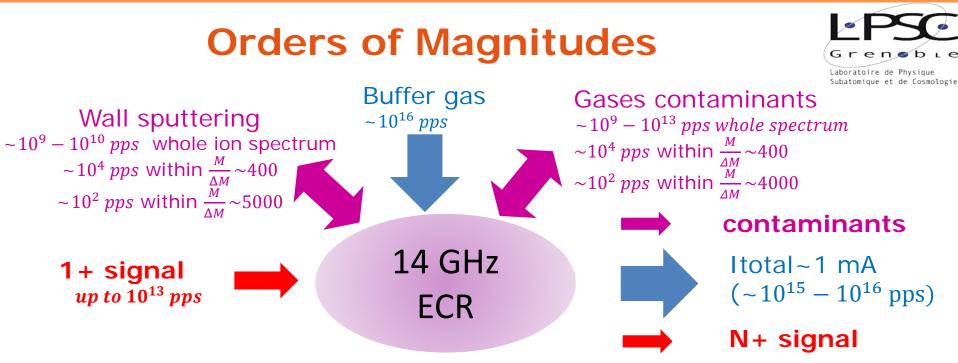
- > 1+ intensity limited to \sim nA (< 10¹⁰ pps)
- ➤ 1+N+ Efficiency ~25-30% / Very High Charge state
- \blacktriangleright Hot electron density $\sim 10^{13} 10^{14} cm^{-3}$
 - short total CB time~10 ms, even for highly charged ions
- \blacktriangleright Base vacuum ~10⁻¹⁰ mbar
- Electrons created and dumped outside the trap
 - Low contamination induced : $10^2 10^3/s$ per $\frac{M}{\Lambda M} \sim 300$


Subatomique et de Cosmologie


Source : F. Wenander CAS 2012

Today ECRIS CB technology


- Based on 20-30 years old 14 GHz ECRIS design
- CW or pulsed 1⁺ beam up to ~1-10 pµA (~10¹³ – 10¹⁴ pps)
- CB time~1-10 ms/charge
- 1+N+ Efficiency 1 charge state: ~5-20%
- > Max charge state:
 - A/Q~3 up to A=50
 - A/Q~7 up to A=150
- > Vacuum ~ 10^{-7} 10^{-8} mbar (non UHV)
 - Gas contamination
- The plasma intercepts the walls
 - condensable sputtering from stainless steel, copper, aluminum alloy...
 - ANL result: within $\frac{M}{\Delta M} \sim 300$, contamination $\sim 10^4 \ pps$



PHOENIX BOOSTER (LPSC, GANIL, TRIUMF, SPES)

ANL Experience : ¹⁴⁶Ba run

Signal to noise ratio is a key parameter for ECRIS CB at low RIB intensity:

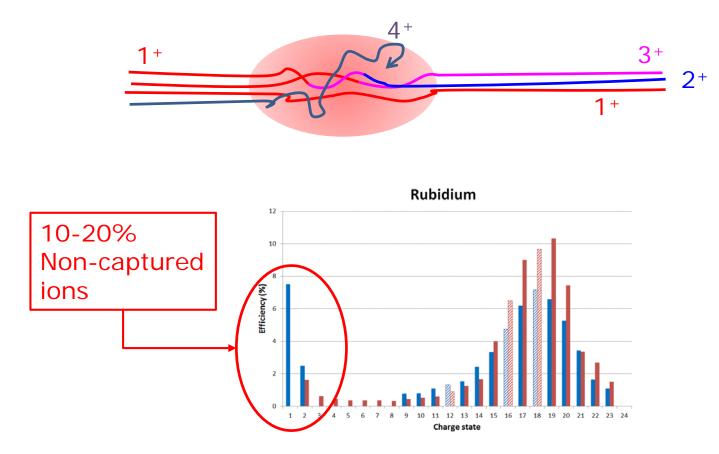
	Signal (pps)	10 ²	10 ³	10 ⁴	10 ⁵	10 ⁶		
For $\frac{M}{\Delta M} \sim 300$	Signal/Noise	0.01	0.1	1	10	100		
	N+ RIB fraction	0.9%	9%	50%	91%	99%		
For $\frac{M}{\Delta M} \sim 6000$	Signal/Noise	1 1	10	100	1000	10000		
	N+ RIB fraction	50%	91	99%	99.9%	99.99%		

CARIBU (ANL), TRIAC (TRIUMF)

ECRIS 18, Catania, Monday September 10th 2018

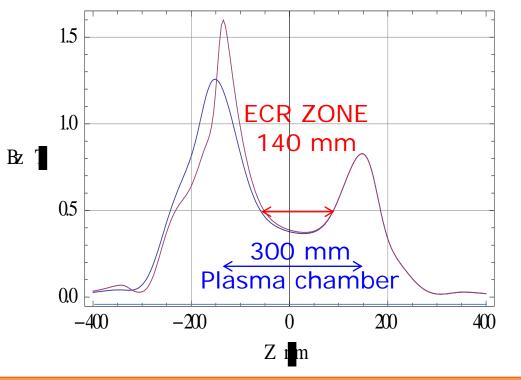
Is it Game Over for ECR CB?

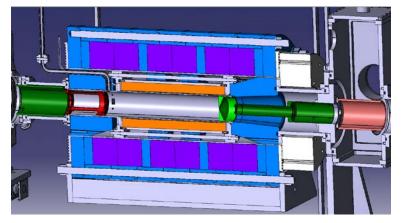
- Performances are based on 20 years old ion source designs
 - Not UHV, plastic O-rings, many materials facing plasma
 - Magnetic field and volume not optimized
- Ion Source know-how dramatically improved since 20 years


LET'S REVIEW WHAT CAN BE DONE

NO!

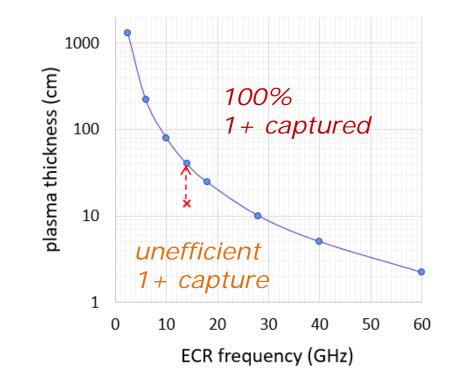
Improve the ion capture


- > Optimize the capture with a longer (or denser) plasma
 - Today, a part of the 1+ beam is not captured, even some 2+ and 3+ are ionized on flight and not captured (10-20% lost)



Improve the ion capture

- Indirect experimental confirmation with PHOENIX ECR CB
 - The axial magnetic field profile maximizing the 1+N+ efficiency is the one maximizing the ECR zone length

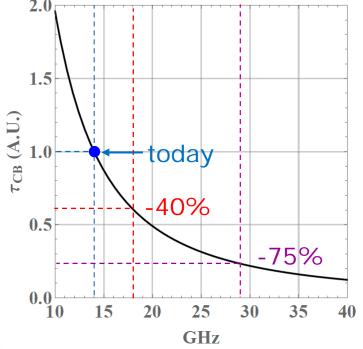


VENUS ECR zone length is ~180 mm @18+28 GHz For a 500 mm long plasma chamber

Improve the ion capture

- > Lenghtening the ECR plasma of the booster at 14 GHz:
 - from 14 to 40 cm would grant a 99% 1+ capture
- > At higher frequency (eg: 18 GHz):
 - 25 cm plasma is necessary to capture all the 1+

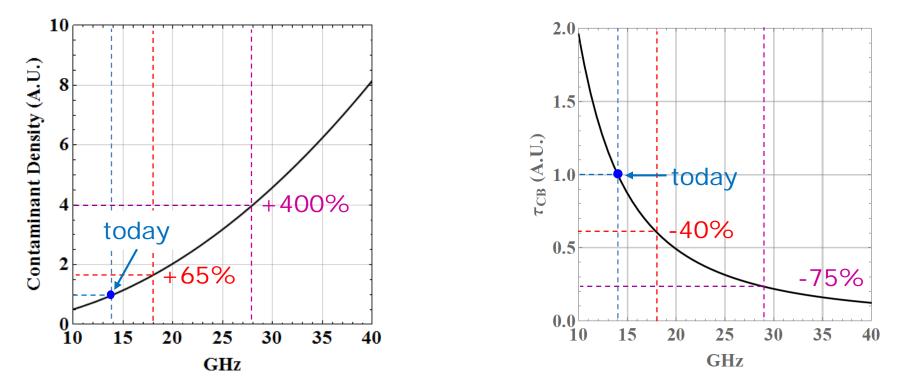
→1+N+ Efficiency would increase up to +20%



Condition to get 99% of 1+ ions captured

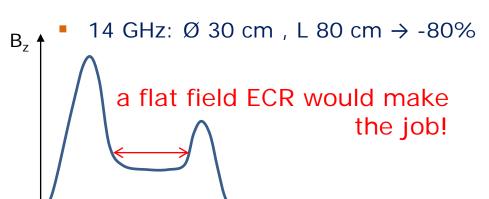
Reduce the CB time?

- ECR frequency scaling law : no limit so far up to 28 GHz operation
- > Plasma density : $n_p \leq \frac{4\pi^2 m_e \epsilon_0}{e^2} f_{ECR}^2$
- > Charge Breeding Time: $\tau_{CB} \propto \frac{1}{n_p} \propto f_{ECR}^{-2}$
 - Today, standard ECR CB are operated at f_{ECR} =14 GHz
 - An 18 GHz ECR CB would reduce τ_{CB} by -40%
 - A 28 GHz ECR CB would reduce τ_{CB} by -75%
 - With respect to 14GHz operation

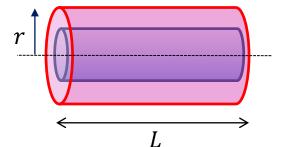


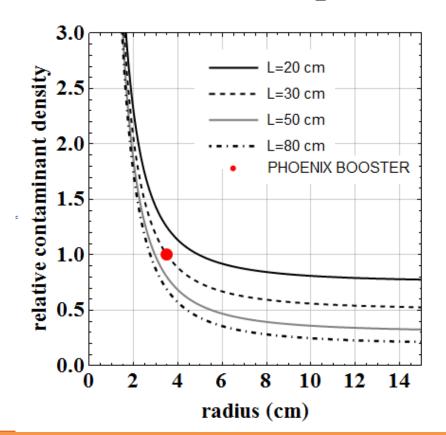
GREAT PROSPECT, BUT ...

Reduce the CB time?

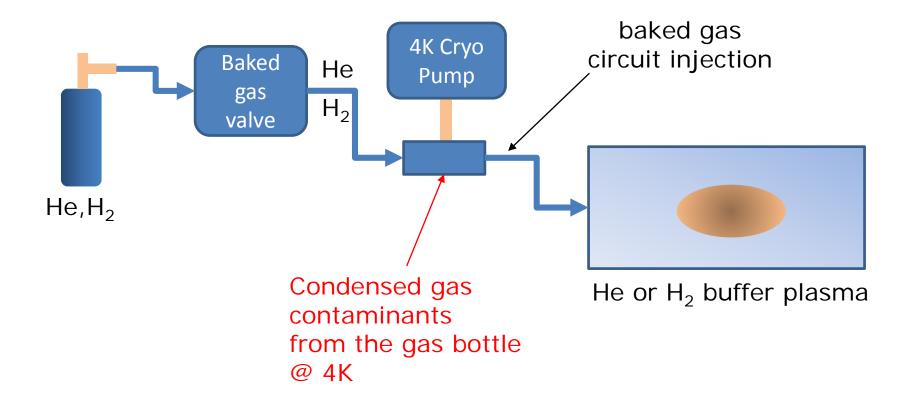


CB time reduction is opposed to background reduction CB reduction time would work with a very high mass separator downstream ($\frac{M}{\Delta M}$ ~6000) Background reduction is a key parameter


Reduce wall contamination


- Geometrical background reduction :
 - Contaminant flux from wall is $\propto S = 2\pi rL + 2\pi r^2$
 - Plasma volume is $\propto V = \pi r^2 L$
 - Contaminant density $C \propto \frac{S}{V} = \frac{2}{r} + \frac{2}{L}$
 - Increasing plasma chamber radius r and length L reduces the contaminant density
 - 14 GHz: Ø 16 cm , L 50 cm \rightarrow -60%

7



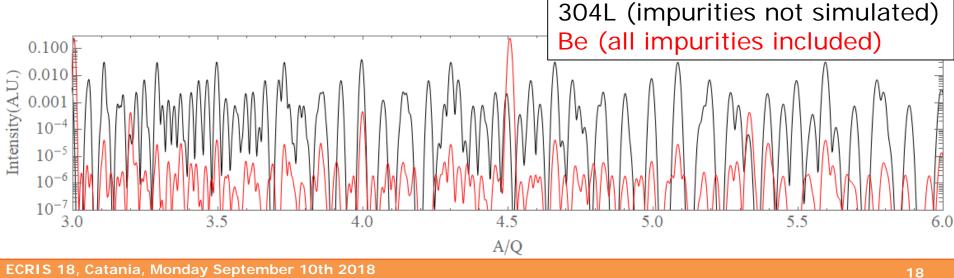
Reduce gas contamination

- ➢ Follow ANL steps to get rid of gas contamination
- > Use He or H_2 as buffer gas

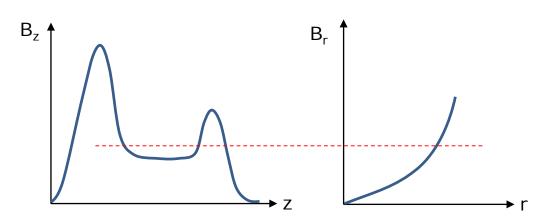
Reduce gas contamination

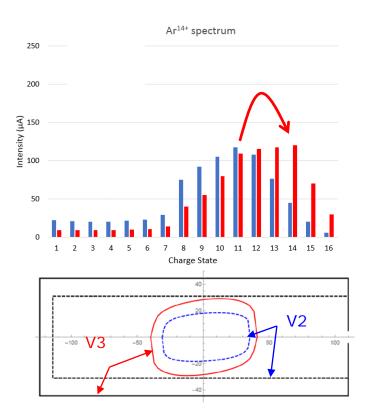
Make a fully UHV Bakeable ECRIS Booster

- Get rid of all the plastic O-rings
- Make a fully UHV Bakeable LEBT
 - With differential pumping close to the ECR CB
 - Get a $10^{-9} 10^{-10}$ mbar base pressure
 - Have gas contaminant reduced by a factor 100


Minimize the contaminant species

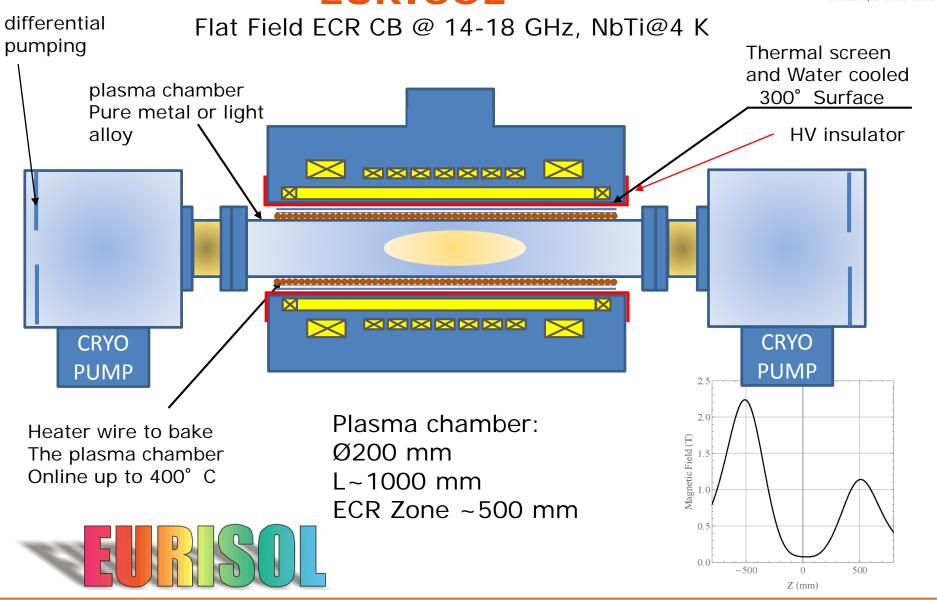
- ➢ Go further with the R&D performed by ANL, TRIUMF, SPES, GANIL
 - Extend the M/Q spectrum areas with low background
- Banish complicated alloys to make the plasma chamber AND the Surrounding vacuum chambers
 - Select a pure material without isotopes , as light as possible:
 - ⁴Be (melts 1287°C); ²⁷Al (melts 660°C) AlBe (melts 644° ⁵⁵Mn ; ⁵⁹Co ; ⁹³Nb ; ¹⁸¹Ta ; ¹⁹⁷Au


- The lighter the mass, the better
- And have everything made with this material: waveguide, plasma electrode, bias disk...



Increase the N+ ion charge state

- Optimize the magnetic confinement using up to date know-how
- Larger plasma chamber radius
 - Shown with PHOENIX V2→V3 upgrade (SPIRAL2)
- ➢ With an optimized ECR CB:
 - Xe⁴²⁺ (A/Q~3 ; A=132)
 - U⁴²⁺ (A/Q~6 ; A=238)


Summary

- > What can be improved in ECR charge breeders?
 - Capture efficiency = > + 20% 1⁺N⁺ efficiency
 - Higher Charge states (U⁴²⁺, Xe⁴²⁺) with better magnetic confinement
 - Gas contaminant can be reduced by a factor 100 at least
 - Condensable contaminant density can be geometrically reduced by -80%
 - Condensable peak distribution can be favorably concentrated on a few peaks => 1/100 to 1/1000 reduction possible
 - charge breeding time can be reduced by -75% at 28 GHz ECR frequency provided the RIB facility gets a very high resolution spectrometer $(\frac{M}{\Delta M} \sim 6000)$
- > Is it worth continuing R&D? YES

Upgraded Charge Breeder for EURISOL

ECRIS 18, Catania, Monday September 10th 2018

Wake up call

ECRIS18 WORKSHOP CO₂ FOOTPRINT

city	round trip	#	kg CO2	
Argonne	1130,208	1	1130	
Beijing	934,276	3	2803	
Berkeley	1637,24	3	4912	
Bhat	1114,836	1	1115	
Busan	1307,596	2	2615	
Caen	383,324	4	1533	
College station	1626,016	1	1626	
Debrecen	366	2	732	
Dubna	600,728	3	1802	
East Lansing	1098,732	2	2197	
Darmstadt	404,552	2	809	
Geneve	672,952	2	1346	
Groningen	445,788	1	446	
Jyvaskyla	664,168	3	1993	
Kyoto	1527,196	1	1527	
Lanzhou	1221,708	7	8552	
Grenoble	319,152	3	957	
Legnaro	268,888	2	538	
Nizhnyi	817,4	4	3270	
Saclay	383,324	2	767	
Lund	462,38	1	462	
Nishina	1302,716	1	1303	
Xi'an	1164,368	1	1164	
		52	43599	
	per capita			

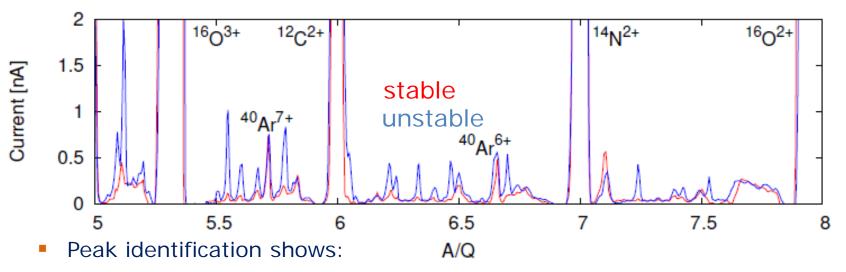
43 TONS of CO₂

20 TONS Kerozene

0.3 TWh

13000 years Of 1 slave Work

https://www.icao.int/environmental-protection/CarbonOffset/Pages/default.aspx https://eco-calculateur.dta.aviation-civile.gouv.fr/



THANK YOU FOR YOUR ATTENTION

Plasma stability and background level

- Plasma kinetic instabilities transiently generate a huge plasma potential
 - V_p~1 kV
 - Strong sputtering from the wall

Joint study with JYFL & IAP RAS

- stainless steel plasma chamber composition: Fe, Cr, Mo, Ni, Al, Zn, Cu, Mn
- Electrodes composition (Al alloy 2017): Al, Cu, Mn, Zn
- Release of previous condensed 1+ beam (Cs,Rb,K)

Prospect: Make sure next ECR CBs operate with a steady plasma

ECR Charge Breeders in the World

Laboratoire de Physique Subatomique et de Cosmologie

		facility	ECR CB type	status	HA
	\star	CARIBU, Argonne, MI, USA	A-ECR	stopped	
	\star	ISAC, TRIUMF, Canada	PHOENIX	Under operation	
	\star	LPSC, France	PHOENIX	Under operation, R&D	
	\star	SPES, LNL, Italy	PHOENIX	Under operation	
10	*	SPIRAL1, GANIL, France	PHOENIX	Under construction	
	*	Texas A&M, College station, TX, USA	A-ECR	Under operation	
	*	TRIAC, KEK- JAERI, Japan	KEK-CB	Facility closed	