

SIMULATIONS OF ECR ION SOURCES

PANTECHNIK

www.cea.fr

BUSAN / 2016-08-30

CEA SACLAY DSM/Irfu/SACM/LEDA Rémi de Guiran

1. General context

- 2. Numerical method
- 3. Results

OUTLINE

4. Perspectives

1. General context

OUTLINE

GENERAL CONTEXT

NUMERICAL METHOD

RESULTS

PERSPECTIVES

cea

ECRIS DEVELOPED AT CEA SACLAY

APANTECHNIK

Wide variety of sources developed...

Project /Source	High Voltage	Extracted intensities	Operation mode	Magnetic Configuration	Talks at ECRIS 2016 (Wednesday)
SILHI → IPHI	100kV	100mA H+	CW / Pulsed	Coils	WEPP01
SPIRAL2	20kV 40kV	5mA H⁺ 5mA D⁺	CW / Pulsed	Magnets	
SILAP-1	40kV	40mA H⁺	Pulsed 50% DC	Magnets	
IFMIF EVEDA	100kV	140mA D+	CW / Pulsed	Coils	WECO01
ALISES	30kV 100kV	18mA H⁺ Not yet tested	Pulsed 20% DC	Coils	WECO02
SILHI2	50kV	40mA H⁺	CW / Pulsed	Magnets	
FAIR	95kV	Not yet tested	Pulsed 4% DC	Coils	WEPP02

- Optimization criteria :
 - Power delivered vs Extracted intensities
 - Emittance of the beam
- And cost considerations (size/weight/volume/material quantities)

R&D ON ECRIS

PERSPECTIVES

- Common objective with Pantechnik.
- Get a better understanding of sources :
 - Extracted intensity as a function of what is injected ?
 - The purity of the extracted beam (between 65 an 90 %, why ?)
 - What is affecting the transient regime ?
- How to ? Compare the models/simulations to the measurements performed at CEA (BETSI test bench)
- Objectives:
 - Improving the source performances
 - Reducing building costs
 - Industrialization

RESULTS

PERSPECTIVES

• Common method for such plasmas : Particle In Cell

9

• Common method for such plasmas : Particle In Cell

Common method for such plasmas : Particle In Cell

- Standard Particle In Cell codes irrelevant for ECRIS dimensions and timescales
 - Debye length limitation : $\Delta_x < \lambda_d \ll L_{system}$ •
 - Plasma pulsation : $\Delta_t < 1/\omega_p \ll t_{system}$ •

	Р	Source	
Lengths (cm)	Debye length	$\lambda_d \sim 10^{-3}~{ m cm}$	Typical scale $l\sim 10~{ m cm}$
Time scales (μs)	Plasma oscillations	$t_{osc} \sim 10^{-5} \ \mu s$	Typical time $t \sim 1 \ \mu s$

Particle in cell method for quasi-neutral plasmas Fits well for ECRIS plasmas and ECRIS dimensions

1.

OUTLINE

2. Numerical method

3.

RESULTS

PERSPECTIVES

METHOD SIGNATURES

Fully explained in *Lampe 98* Main signatures recapped below

- Electrons are assumed to be strongly magnetized. So each electron is frozen on a field line : removes the electron giro-radius and giro-time scale → Needs a specific grid and specific deposit
- 2. Electrons are submitted to an electric field $E_{||}$ parallel to field lines. $E_{||}$ is computed so as to ensure quasi-neutrality. Hypothesis are made to cut off high frequency dynamics.
- 3. Ions are treated as «jumbo jets », free to move in the chamber under the influence of \vec{E} and \vec{B} . A special treatment has to be done in order to compute E_{\perp} transverse to the field lines.
- 4. Sheath on the edges of the chamber are not resolved → treated as potential barriers for electrons.
- 5. A presheath is resolved to impose the Bohm criterion for ions.

RESULTS

PERSPECTIVES

METHOD SIGNATURES

Fully explained in *Lampe 98* Main signatures recapped below

- Electrons are assumed to be strongly magnetized. So each electron is frozen on a field line : removes the electron giro-radius and giro-time scale → Needs a specific grid
- 2. Ions are treated as "jumbo jets", free to move in the plasma chamber
- 3. Electrons are submitted to an electric field $E_{||}$ parallel to field lines. $E_{||}$ is computed so as to ensure quasi-neutrality. Hypothesis are made to cut off high frequency dynamics.
- 4. Ions are treated as «jumbo jets », free to move in the chamber under the influence of \vec{E} and \vec{B} . A special treatment has to be done in order to compute E_{\perp} transverse to the field lines.
- 5. Sheath on the edges of the chamber are not resolved → treated as potential barriers for electrons.
- 6. A presheath is resolved to impose the Bohm criterion for ions.

GENERAL CONTEXT

NUMERICAL METHOD

RESULTS

PERSPECTIVES

NON CARTESIAN GRID

GENERAL CONTEXT

NUMERICAL METHOD

RESULTS

PERSPECTIVES

NON CARTESIAN GRID

GENERAL CONTEXT

NUMERICAL METHOD

RESULTS

PERSPECTIVES

NON CARTESIAN GRID

21

GENERAL CONTEXT

NUMERICAL METHOD

RESULTS

PERSPECTIVES

NON CARTESIAN GRID

Typical grid step : few millimeters

RESULTS

PERSPECTIVES

METHOD SIGNATURES

Fully explained in *Lampe 98* Main signatures recapped below

- Electrons are assumed to be strongly magnetized. So each electron is frozen on a field line : removes the electron giro-radius and giro-time scale → Needs a specific grid
- 2. lons are treated as "jumbo jets", free to move in the plasma chamber
- 3. Electrons are submitted to an electric field $E_{||}$ parallel to field lines. $E_{||}$ is computed so as to ensure quasi-neutrality. Hypothesis are made to cut off high frequency dynamics.
- 4. Ions are treated as «jumbo jets », free to move in the chamber under the influence of \vec{E} and \vec{B} . A special treatment has to be done in order to compute E_{\perp} transverse to the field lines.
- 5. Sheath on the edges of the chamber are not resolved → treated as potential barriers for electrons.
- 6. A presheath is resolved to impose the Bohm criterion for ions.

PERSPECTIVES

ION DEPOSITION

24

RESULTS

PERSPECTIVES

ION DEPOSITION

RESULTS

PERSPECTIVES

ELECTRON DEPOSITION

GENERAL CONTEXT

NUMERICAL METHOD

RESULTS

PERSPECTIVES

ELECTRON DEPOSITION

RESULTS

PERSPECTIVES

METHOD SIGNATURES

Fully explained in *Lampe 98* Main signatures recapped below

- Electrons are assumed to be strongly magnetized. So each electron is frozen on a field line : removes the electron giro-radius and giro-time scale → Needs a specific grid
- 2. Ions are treated as "jumbo jets", free to move in the plasma chamber
- 3. Electrons are submitted to an electric field $E_{||}$ parallel to field lines. $E_{||}$ is computed so as to ensure quasi-neutrality. Hypothesis are made to cut off high frequency dynamics.
- 4. Ions are treated as «jumbo jets », free to move in the chamber under the influence of \vec{E} and \vec{B} . A special treatment has to be done in order to compute E_{\perp} transverse to the field lines.
- 5. Sheath on the edges of the chamber are not resolved → treated as potential barriers for electrons.
- 6. A presheath is resolved to impose the Bohm criterion for ions.

RESULTS

PERSPECTIVES

ELECTRON DYNAMICS

29

RESULTS

PERSPECTIVES

Cea

ELECTRON DYNAMICS

- As each electron is linked to a field line, phase space can be reduced to $(i_l, z, v_{||}, v_{\perp})$, which is equivalent to $(i_l, z, v_{||}, \mu_m)$ with $\mu_m = m_e v_{e\perp}^2 / 2|B|$
- $E_{||}$ is computed given deposited quantities from ions and electrons
- Then electrons can be pushed to the next time step

RESULTS

PERSPECTIVES

METHOD SIGNATURES

Fully explained in *Lampe 98* Main signatures recapped below

- Electrons are assumed to be strongly magnetized. So each electron is frozen on a field line : removes the electron giro-radius and giro-time scale → Needs a specific grid
- 2. Ions are treated as "jumbo jets", free to move in the plasma chamber
- 3. Electrons are submitted to an electric field $E_{||}$ parallel to field lines. $E_{||}$ is computed so as to ensure quasi-neutrality. Hypothesis are made to cut off high frequency dynamics.
- 4. Ions move in the chamber under the influence of \vec{E} and \vec{B} . A special treatment has to be done in order to compute E_{\perp} transverse to the field lines.
- 5. Sheath on the edges of the chamber are not resolved → treated as potential barriers for electrons.
- 6. A presheath is resolved to impose the Bohm criterion for ions.

GENERAL CONTEXT GENERAL CONTEXT

NUMERICAL METHOD NUMERICAL METHOD RESULTS RESULTS PERSPECTIVES

PERSPECTIVES

ION DYNAMICS

RESULTS

PERSPECTIVES

METHOD SIGNATURES

Fully explained in *Lampe 98* Main signatures recapped below

- Electrons are assumed to be strongly magnetized. So each electron is frozen on a field line : removes the electron giro-radius and giro-time scale → Needs a specific grid
- 2. Ions are treated as "jumbo jets", free to move in the plasma chamber
- 3. Electrons are submitted to an electric field $E_{||}$ parallel to field lines. $E_{||}$ is computed so as to ensure quasi-neutrality. Hypothesis are made to cut off high frequency dynamics.
- 4. Ions move in the chamber under the influence of \vec{E} and \vec{B} . A special treatment has to be done in order to compute E_{\perp} transverse to the field lines.
- 5. Sheath on the edges of the chamber are not resolved → treated as potential barriers for electrons.
- 6. A presheath is resolved to impose the Bohm criterion for ions.

RESULTS

PERSPECTIVES

SHEATH (ELECTRON BOUNDARIES)

RESULTS

PERSPECTIVES

METHOD SIGNATURES

Fully explained in *Lampe 98* Main signatures recapped below

- Electrons are assumed to be strongly magnetized. So each electron is frozen on a field line : removes the electron giro-radius and giro-time scale → Needs a specific grid
- 2. Ions are treated as "jumbo jets", free to move in the plasma chamber
- 3. Electrons are submitted to an electric field $E_{||}$ parallel to field lines. $E_{||}$ is computed so as to ensure quasi-neutrality. Hypothesis are made to cut off high frequency dynamics.
- 4. Ions move in the chamber under the influence of \vec{E} and \vec{B} . A special treatment has to be done in order to compute E_{\perp} transverse to the field lines.
- 5. Sheath on the edges of the chamber are not resolved → treated as potential barriers for electrons.
- 6. A presheath is resolved to impose the Bohm criterion for ions.

RESULTS

PERSPECTIVES

37

RESULTS

PERSPECTIVES

cea

PRESHEATH (ION BOUNDARIES)

 We impose a certain width for a presheath in which we impose the Bohm criterion.

 \rightarrow If an ion in this sheath is going to the wall, it is accelerated by an incremental speed, so that the Bohm criterion is satisfied.

1.

OUTLINE

2.

3. Results

4.

39

- 2. Argon inside the chamber $n(z=0) = 1.5*10^{11} \text{ cm}^{-3}$
- 3. $n \alpha B_z \alpha z^2$

SET UP

- 4. Heating using a very simple operator
- 5. Ionization using Ar cross section

t = 0 *µs

t = 1 *µs

t = 3 *µs

t = 7 *µs

t = 9 *µs Boundary conditions problem !

2. 3.

1.

OUTLINE

4. Perspectives

PERSPECTIVES

PERSPECTIVES

- 1. First fix the numerical problem
- 1. Implementation of the coulombian collisions.
- 2. Better heating operator.
- 3. Including the extraction

THANK YOU