Recent Bremsstrahlung Measurements from the Superconducting ECR Ion Source VENUS

Janilee Y. Benitez,

Claude M. Lyneis, Larry W. Phair, Damon S. Todd, & Dan Z. Xie

Lawrence Berkeley National Lab

August, 2016

Outline

- I. Quick Overview of VENUS
- II. X-ray detector setup at VENUS
- III. Analysis of Bremsstrahlung spectra
- IV. Summary of Data
- V. Investigation
- VI. Conclusion

•Fully Superconducting Niobium-Titanium sextupole & 3 solenoids enclosed in LHe •LN Reservoir: 70K, cools normal conducting leads

•LHe Reservoir: 4.2K

•Uses <u>4 cryocoolers</u> to condense evaporated LHe, provide 6W of cooling power at 4.2K

•can be run 1.5-2 yrs without transferring LHe

Maximum Injection Field, on axis	4.0T
Maximum Extraction Field, on axis	3.0T
Maximum Radial Field, at wall	2.2T
LHe reservoir Temperature	4.3K
28 GHz Maximum Power Injected	8.0kW
18+28 GHz Maximum Power Injected	10kW

 4th Gen ECRs expected to produce more intense and energetic bremsstrahlung that add thermal load to cryostat

We investigated how the magnetic field geometry and frequency affect the bremsstrahlung spectra and spectral temperature T_s

Detector & Setup

Janilee Benitez

Janilee Benitez

- 1. Calibration Applied
- 2. Spectra corrected for detector efficiency

- 1. Calibration Applied
- 2. Spectra corrected for detector efficiency
- 3. Natural log of data taken in energy range of interest.
- 4. Linear fit applied. $T_s = -1/s$ lope

Janilee Benitez

Source Parameters

Power 14, 18, or 28GHz (W) 1000W

Source Parameters

Power 14, 18, or 28GHz (W)	1000W
Injection Pressure (Torr)	1-2x10 ⁻⁷
Extraction Voltage (kV)	22

Janilee Benitez

Source Parameters

Power 14, 18, or 28GHz (W)	1000W
Injection Pressure (Torr)	1-2x10 ⁻⁷
Extraction Voltage (kV)	22
Biased Disk Voltage (-V)	~40-50V
Gas	Oxygen

Summary of Data

VENUS Onlyy = 116.0We investigated how
the magnetic field
geometry and
frequency affect the
bremsstrahlung
spectra and spectral
temperature T_s y = 116.0 $x^{2} = 0.913$

Summary of Data

Janilee Benitez

Investigation Pt 1: Constant B_{min} while Varying ∇B_{ECR}

NO.DI

Investigation Pt 2: Constant ∇B_{ECR} while Varying B_{min}

NU-DF

Investigation Pt 3: Different Frequencies at Same Magnetic Field Values

3rd part of investigation

- Hold B-field constant, Vary frequency 14, 18, 28GHz
- At same B-field, different gradients for each frequency

Frequency (GHz)	Injection Gradient at B _{ECR} (T/m)	Extraction Gradient at B _{ECR} (T/m)	Ts (keV)
14	-4.67	4.22	48.8
18	-7.71	6.54	43.8
28	-12.75	10.00	44.4

- Usually operate with B_{ext}>B_{rad}
- Varied B_{rad} from 1.29T to 2.15T with constant B_{inj}/B_{ext}/B_{mid}=3.39T/2.1T/0.48T

Summary of Data

Janilee Benitez

Conclusions

Janilee Benitez

Conclusions

1. T_c depends on B_{min}, not ∇B_{ECR} 2. T_s is independent of frequency

감사합니다

(gam-sa-ham-ni-da)

"Thank You"

- Lowered B_{ext} to 1.47T
- Varied B_{rad} from 1.29T to 2.15T with constant $B_{inj}/B_{ext}/B_{mid}=2.23T/1.47T/0.33T$
- Found that with B_{ext}<B_{rad} T_s increases

- When B_{ext}<B_{rad} is T_s still dependent on B_{min}?
- Varied B_{min} at different values of B_{rad}

Found that T_s still depends on B_{min} when weak point in confinement is shifted towards extraction

Future Work

ECRIS2016 • August, 2016

Janilee Benitez

Extraction Electrode

Janilee Benitez

Conclusion

Janilee Benitez

Background Subtraction

185/150/150/450 18GHz :1000W

Photon Transmission Through Aluminum for N_{initial}=1000

Summary of Data

