Broadband Microwave Emission Spectrum Associated With Kinetic Instabilities in ECR Plasmas

<u>Ivan Izotov</u>, Taneli Kalvas, Hannu Koivisto, Jani Komppula, Risto Kronholm, Janne Laulainen, Dmitry Mansfeld, Vadim Skalyga, Olli Tarvainen

Outline

- Reminder: previous works on cyclotron instabilities and its affect on beam currents etc.
- Improved setup for wider frequency band and double-frequency heating simultaneously with microwave measurements
- Examples of wide band emission in case of different heating frequencies
- Quasi-linear "CW" emission: theory and the first experimental observation
- Open-space electromagnetic emission
- Conclusion

Beam current oscillations

Tarvainen et all, Review of Scientific Instruments 86, 023301 (2015); doi: 10.1063/1.4906804

ECRIS 2016

Previous scheme

Izotov et all, Plasma Sources Sci. Technol. 24 (2015) 045017 (9pp) doi:10.1088/0963-0252/24/4/045017

2016/08/29	ECRIS 2016	Ivan Izotov
------------	------------	-------------

Izotov et all, Plasma Sources Sci. Technol. 24 (2015) 045017 (9pp) doi:10.1088/0963-0252/24/4/045017

1. Introduction

Oxygen, B_{min}/B_{ECR} =0.83, 600 W, p=4.2E-7 mbar

Izotov et all, Plasma Sources Sci. Technol. 24 (2015) 045017 (9pp) doi:10.1088/0963-0252/24/4/045017

2016/08/29	ECRIS 2016	Ivan Izotov	6
------------	------------	-------------	---

Slow extraordinary waves, low angles

The most probable excited wave is the slow extraordinary Z-mode propagating quasilongitudinally with respect to the external magnetic field. Such waves are excited with frequencies of $f_{\rm pe} < f < f_{\rm ce}$, which matches the experimental conditions. Moreover, it has been shown that the optimal emission frequency of the longitudinal Z-mode depends only weakly on $f_{\rm pe}$ (i.e. $n_{\rm e}$) but is rather defined by the average energy of the electron population interacting with the wave.

Improved scheme

Frequency band of an acquisition system was expanded from 8-15 GHz to ~9-20 GHz (and even further, but with attenuating of higher frequencies). Fast oscilloscope with 25 GHz bandwidth was used for direct measurement of microwave emission waveform.

Broadband emission, 14 GHz heating

Broadband emission, TWTA heating, 12.75 GHz, ultimate settings (highest B-field, highest power)

Averaged emission spectrum dependence on heating frequency: TWTA 11.7-12.75 GHz, 200 W

Theoretical prediction of "CW" emission

Fig. 1. Time dependence of (left panel) the deviation $\delta N = N - \overline{N}$ of the density of hot electrons from the average value, (middle panel, solid line) increment γ , (middle panel, dotted line) the decrement v of the working mode of the maser, (right panel, solid line) the density of the electromagnetic energy *E*, and (right panel, dotted line) the average value \overline{E} of this energy that are obtained for the linear regime by solving the system of Eqs. (1) and (2) with h = const, $v = v_0(1 - v^*t)$, $v_0/\gamma_0 = 1.005$, $v^*/\gamma_0 = 10^{-4}$, and $\varepsilon_0 = 0.99v^*/\gamma_0$.

Shalashov et all, JETP Letters, 2006, Vol. 84, No. 6, pp. 314–319

CW/pulsed emission threshold

CW/pulsed emission threshold

Threshold B-field value: the excitation of em-waves changes from nonlinear pulsed mode to quasi-linear "CW"-mode forth and back!

Pure CW emission

ECRIS 2016

CW emission waveforms

Signals are shifted and normalized

B-field – a main parameter to control CI

2016/08/29

ECRIS 2016

Open-space emission (no connection between scope and setup)

Conclusion

- Emission of em-waves in the frequency band 9-25 GHz has been observed
- Main emission frequencies have proven to be independent on heating frequency
- Quasi-linear regime of cyclotron instability accompanied by constant-wave electromagnetic emission has been experimentally observed for the first time
- Stable/unstable/CW zones have been found for set of frequencies
- Plasma emits even in the wider range of frequencies: 5 GHz < F < ??? (but obviously more than 25 GHz)

To be done:

- Mechanism of frequency doubling? (First/second harmonics? Double plasma resonance? ...)
- CW emission frequencies dependence?
- Is it possible to improve ECRIS performance by driving it in a quasi-linear mode of CI?

Thank you!

